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a discrete subgroup. This incorporates reductions with duality twists, T-folds and a class

of flux compactifications, together with the non-geometric backgrounds expected to arise

from these through T-duality. It also incorporates backgrounds that are not even locally

geometric, and suggests a generalisation of T-duality to a more general context. We discuss

the effective field theory arising from such an internal sector, give a world-sheet sigma

model formulation of string theory on such backgrounds and illustrate our discussion with

detailed examples.
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1 Introduction

String theory can be formulated on certain non-geometrical spaces [1–6] as well as the

familiar geometric spaces that consist of a manifold equipped with a metric and various

background fields. An important class of these are the T-folds [7, 8], which are spaces

constructed from patches of conventional string backgrounds that have transition func-

tions that include T-dualities. T-folds can arise from taking the T-duals of conventional

backgrounds, but there are also some non-trivial examples that are not related to any

conventional background by dualities [1].

T-duality is a stringy symmetry acting on spaces which have a torus fibration, so T-

folds are constructed from patches that are a product of a torus with a patch of a base space.

The standard rules for T-duality found by Buscher [9] require that the U(1)d torus action on

the fibres be isometric and preserve the background fields. However, there is some evidence

that there should be a generalisation of T-duality that applies to the case of a torus fibration

where the torus action is not isometric [10]. Such a case arises, for example, on trying to

T-dualise a three-dimensional torus with H-flux in all three circles [3]. More generally, it

can take a geometric space or a T-fold to a space with what has been called R-flux [11, 12].

Non-geometric backgrounds cannot be fully understood using supergravity or conven-

tional world-sheet sigma-models, so another approach is needed. One approach has been

through the doubled formalism [7]. Conformal field theory on a d-dimensional torus has

a natural formulation on a doubled space, the doubled torus. States naturally live on

the 2d-dimensional Narain lattice, labeled by integers determining the momentum and the

winding number or string charge. The T-duality group O(d, d; Z) acts naturally on this

lattice. Fourier transforming the d quantized momenta and d winding numbers gives 2d

periodic coordinates of a doubled torus T 2d which contains the original torus T d. Act-

ing with O(d, d; Z) serves to rotate the physical torus into a different T d subspace of the

doubled torus, which contains all T-duals of the original torus. In this way, T-duality can

be thought of as changing the choice of T d subspace of the doubled space that is to be

regarded as ‘physical’. The name polarisation was suggested in [7] for the choice of such

a T d subspace, in analogy with classical mechanics. The group O(d, d; Z) acts geometri-

cally through large diffeomorphisms on the doubled torus, allowing a T-duality covariant

formulation. This is then broken when a polarisation is chosen.

This is the basis for the doubled formalism for T-folds [7, 8]. For a T-fold or geometric

background with a T d fibration, the T d fibres are replaced by the doubled tori T 2d and,

– 1 –
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as the group O(d, d; Z) acts geometrically through large diffeomorphisms on the doubled

fibres, the result is a T 2d bundle. If a global polarisation exists, then it leads to a geometric

background by selecting a submanifold with T d fibres, while a non-trivial T-fold arises

when there is a topological obstruction to choosing a polarisation globally. In such cases, a

polarisation can be chosen locally in each patch, but the patches do not fit together to form

a submanifold and there is no global spacetime. In [7], a world-sheet formulation for strings

in such spaces was given, based on a sigma-model whose target is this geometrical space

with doubled fibres, together with a self-duality constraint to halve the number of degrees of

freedom on the doubled fibres. This formulation has the virtue of being manifestly duality-

covariant, and involves structures that also feature in generalised geometry [13, 14].

In this doubled picture, the extra d coordinates that are conjugate to winding num-

bers are auxiliary and no physical fields depend on them. However, it was suggested in [10]

that generalising T-duality to the case without isometries on the torus would lead to con-

figurations in which the background fields have non-trivial dependence on the extra dual

coordinates in this doubled representation. One of our aims here is to seek a natural dou-

bled geometry for such cases. There is some evidence that such more general non-geometric

backgrounds should arise in string theory. In [15] it was argued that T-dualising the NS

5-brane properly leads to a background with non-trivial dependence on a dual coordinate,

and the physical implications were explored. In [16–18], it was argued that this dependence

reflected world-sheet instanton effects. In [10] it was suggested that backgrounds depending

on both spacetime and dual coordinates would arise natually in string field theory.

Our construction is motivated by the so-called twisted torus. Consider a reduction

with duality twist, i.e. a reduction on a d-torus to give a theory with a duality symmetry,

followed by reduction on a further circle with a duality twist. This can be thought of as a

stringy version [2] of a Scherk-Schwarz reduction [19]. It was shown in [2, 20] that if the

duality twist is geometric, then this is equivalent to a compactification on a space which is

a T d bundle over a circle. Such a torus bundle over a circle is parallelisable and is in fact a

(d+1)-dimensional group manifold G identified under the action of a discrete group Γ [21];

such a space G/Γ is sometimes referred to as a twisted torus in this context. Moreover,

the group G is precisely the Kaluza-Klein gauge group that arises from compactification

of pure gravity on G/Γ, as we show in section 2.1.

More generally, one can consider a reduction in which the duality twist is in the T-

duality group O(d, d; Z). Then the doubled formalism is in terms of a T 2d bundle over

a circle [7, 22], which is itself a twisted torus given by the identification of a (2d + 1)-

dimensional group by a discrete subgroup. We will review this construction in detail and

give some illustrative examples. It is natural to also consider adding a coordinate conjugate

to the winding charge on the base circle, giving a (2d + 2)-dimensional space. This gives a

(2d+2)-dimensional twisted torus, but one would expect that the extra doubled coordinate

for the base plays a trivial role, in that nothing depends on it. However, it was argued

in [10] that T-duality on the base circle would lead to configurations with a non-trivial

dependence on this extra coordinate. Moreover, we cannot use standard approaches to

check this and find the dependence on the dual coordinate. We will here construct a

natural (2d+2)-dimensional geometry and attempt to describe different dual formulations

– 2 –
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in terms of polarisations selecting d+1 of the directions locally. As we will see, this does not

always lead to even local patches that are patches of geometric backgrounds, and moreover

there can be an unexpected dependence on the extra coordinate doubling the base.

The theory that results from such a reduction with duality twist has a gauge group G
which is (2d + 2)-dimensional, as is familiar from the special cases that have a field theory

truncation in which the dimensional reduction amounts to a Scherk-Schwarz reduction [19].

This suggests considering the (2d + 2)-dimensional group manifold G identified under a

discrete subgroup to give a compact twisted torus G/Γ. This was first proposed in [22] and

a related proposal was considered in [23]. This gives a natural geometry which includes

a circle that is dual to the base. The idea is that choosing different polarisations of this

completely doubled space should give configurations that are dual to one another. These

include the duals of the original configuration obtained by acting with O(d, d; Z) T-dualities

on the fibres, but also lead to new configurations with non-trivial dependence on the dual

coordinate of the base by acting with what we refer to as generalised T-dualities.

In this way, a doubled space which is a twisted torus G/Γ is a natural generalisation

of the bundles with doubled torus fibres. In this paper we systematically investigate the

generalisation of the doubled formalism of [7] to the doubled twisted torus G/Γ for general

groups G that have a natural metric of signature (D,D). We discuss the spacetime picture

and give a world-sheet sigma model with such a doubled target space together with a

constraint that halves the doubled degrees of freedom. The group structure plays a vital

role in the construction, and in particular in the elimination of spurious degrees of freedom

using the constraint. This is discussed in detail in section six. We discuss the discrete

symmetries that replace O(D,D; Z) (where 2D is the dimension of G) and the dualisations

that arise from different choices of D-dimensional polarisation. The formalism applies

readily to the case considered above in which G is the gauge group from a reduction with

a duality twist. It can also accommodate the non-abelian T-duality of [24] with G the

cotangent bundle of a group G, or the Poisson-Lie duality of [25] in the case in which

G is a Drinfel’d double. Such non-abelian dualities are believed not to be symmetries

of string theory [24] but instead relate distinct string backgrounds, while the generalised

dualities discussed above are expected to be stringy symmetries [10]. Thus some care is

needed in interpreting the formalism and applying it to the general case. However, it is

possible that the present formalism may provide new insight into non-abelian and Poisson-

Lie dualities. It would be interesting to see whether the constructions considered could

have generalisations to more general geometries, such as Calabi-Yau manifolds.

The plan of the paper is as follows. In the following section we review T-duality twist

compactifications. The (d + 1)-dimensional internal space is described in terms of the

doubled torus formalism and the doubled twisted torus formalism. The existence of global

polarisations and the role of T-duality in relating different polarisations is discussed. In sec-

tion three, we apply the formalism of section two to a particular three-dimensional compact

manifold — the nilfold — and discuss how this background, and the dual configurations,

related to the nilfold by the action of O(2, 2; Z), may be lifted to and recovered from a

five-dimensional doubled torus and a six-dimensional doubled twisted torus. Section four

reviews the doubled torus formalism from the world-sheet perspective, as introduced in [7]

– 3 –
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and a detailed account of how the constraint is imposed in the sigma model theory is given.

In section five, this sigma model description is applied to the five-dimensional doubled torus

examples considered, from the target space perspective, in section three. Finally, in sec-

tion six, we introduce a world-sheet description of the doubled twisted torus formalism. It is

shown that the sigma model for the doubled torus introduced in [7] emerges as a particular

special case and the world-sheet description of the R-flux background is discussed.

2 Target spaces and doubled target spaces

Consider the theory in (n + d + 1)-dimensional spacetime with a metric, two-form gauge

field B̂(2), scalar field Φ̂ and the Lagrangian

Ln+d+1 = e−
bΦ

(
R̂ ∗ 1 − dΦ̂ ∧ ∗dΦ̂ − 1

2
Ĝ(3) ∧ ∗Ĝ(3)

)
(2.1)

where Ĝ(3) = dB̂(2). The compactification on T d, using the standard Kaluza-Klein ansatz,

gives [30] a massless field theory with gauge group U(1)2d and a manifestly O(d, d) invariant

Lagrangian in (n + 1) dimensions

Ln+1 = e−φ

(
R ∗ 1 + ∗dφ ∧ dφ +

1

2
∗ G(3) ∧ G(3) +

1

4
∗ dMAB ∧ dMAB

−1

2
MAB ∗ FA ∧ FB

)
(2.2)

where FA = dAA, and AA are 2d abelian gauge fields, with d gauge fields coming from

the off-diagonal parts of the metric and d gauge fields coming from the off-diagonal parts

of the 2-form gauge field. The scalar coset space O(d, d)/O(d) × O(d) is parameterised by

a symmetric 2d × 2d matrix MAB, satisfying the constraint

MAB = LAC(M−1)CDLBD (2.3)

where LAB is the constant O(d, d)-invariant metric, which is used to raise and lower the

indices A,B = 1, . . . , 2d.

The generators TA of the U(1)2d gauge symmetry, consist of Za, (a, b = 1, 2, . . . d)

which generate the U(1)d action on the T d fibre, and Xa, which generate antisymmetric

tensor transformations for the B-field components with one leg on the T d and the other in

the external spacetime, so that

TA =

(
Za

Xa

)
(2.4)

In this basis, the O(d, d) metric is off-diagonal

L =

(
0 1

1 0

)
(2.5)

– 4 –
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Next, consider a Scherk-Schwarz reduction on a further circle with periodic coordinate

x ∼ x + 1, with an O(d, d) duality twist around the circle [19]. The twist is specified

by NA
B , a matrix representation of an element of the Lie algebra of O(d, d), and the x-

dependence is given in terms of an O(d, d) transformation exp(Nx), so that the O(d, d)

monodromy on going around the x circle is exp(N). In string theory, the monodromy

is required to be in the T-duality group O(d, d; Z) [20, 31]. The reduced theory may be

written in a manifestly O(d + 1, d + 1) covariant way [21, 32]

Ln = e−ϕ

(
R ∗ 1 + ∗dϕ ∧ dϕ +

1

2
∗ H(3) ∧H(3) +

1

4
∗ DMMN ∧ DMMN

−1

2
MMN ∗ FM ∧ FN

)
+ V ∗ 1 (2.6)

The theory has a non-abelian gauge symmetry, for which the field strengths for the gauge

connections AM are FM . The two-form gauge field B(2) has a three-form field strength

H(3) = dB(2) + · · · with Chern-Simons terms. The scalar coset space O(d+1, d+1)/O(d+

1)×O(d+ 1) is parameterised by a symmetric 2(d+ 1)× 2(d+ 1) matrix MMN , satisfying

the constraint

MMN = LMP (M−1)PQLNQ (2.7)

where LMN is the O(d + 1, d + 1)-invariant metric, which is used to raise and lower the

indices M,N = 1, . . . , 2d + 2. It is a constant 2(d + 1) × 2(d + 1) matrix given by (2.5).

The explicit relationship between the fields in the (n + 1)-dimensional abelian theory and

the n-dimensional non-abelian theory, along with the explicit form for the scalar potential

V may be found in appendix A of [22], or in [32].

One effect of the duality twist is to give a non-abelian gauge symmetry. With no twist,

NA
B = 0, this would have given a reduction on T d+1 of the same form as (2.2), with abelian

gauge symmetry U(1)2(d+1) and 2(d + 1) abelian gauge fields AM . The generators consist

of the 2d generators TA together with Zx and Xx from the reduction on the x circle. With

a twist, NA
B 6= 0, this algebra is deformed to a non-abelian gauge algebra of the same

dimension, 2(d + 1). The Lagrangian (2.6) has a gauge symmetry with Lie algebra [22]

[Zx, TA] = −NB
ATB [TA, TB ] = −NABXx (2.8)

where NAB = LACNC
B is antisymmetric and all other commutators vanish. Note that the

TA no longer generate an abelian sub-algebra.

Under the decomposition of TA into Za and Xa, the twist matrix may be written as

(using NAB = −NBA)

NA
B =

(
fxa

b Qx
ab

Kxab −fxb
a

)
(2.9)

for some antisymmetric Qx
ab = −Qx

ba and Kxab = −Kxba. The gauge algebra can then be

written as

[Zx, Za] = fxa
bZb + KxabX

b [Zx,Xa] = −fxb
aXb + Qx

abZb

[Za, Zb] = KxabX
x [Xa, Zb] = −fxb

aXx [Xa,Xb] = Qx
abXx

(2.10)

– 5 –
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with all other commutators vanishing. Here K is the H-flux, f is sometimes referred to as

a geometric flux, and Q is sometimes referred to as a non-geometric flux.

The matrices of the form (2.9) are the generators of O(d, d). We will refer to the

subgroup generated by lower triangular matrices of the form (2.9) with Qx
ab = 0 as the

geometric subgroup ∆, consisting of GL(d; R) transformations generated by fxa
b and B-

shifts acting on the fibre components of B, Bab → Bab+λKxab. This has a discrete subgroup

∆(Z) = ∆∩O(d, d; Z). If the twist is in ∆(Z), then it is geometric, consisting of a GL(d; Z)

twist acting as a large diffeomorphism of the T d fibres together with a discrete B-shift.

This is equivalent to the compactification with H-flux on a T d torus bundle over a circle

with monodromy exp(fxa
b) [21, 33–35]. For such a geometric twist, this compactification

space is a group manifold G, identified under a discrete subgroup Γ ⊂ G. The group G

is usually non-compact, and Γ is chosen, if possible, to be such that G/Γ is compact. A

subgroup Γ which satisfies this criterion is said to be cocompact.

2.1 The pure gravity example

As an illustrative example, consider the pure gravity theory given by setting the B-field

and dilaton ϕ to zero. The monodromy of the reduction is given by (2.9) with Qx
ab = 0,

Kxab = 0 and fxa
b = N b

a. The n-dimensional action (2.6) reduces to [19]

Ln = R ∗ 1 − 1

4
gmngpqDgmp ∧ ∗Dgnq −

1

2
gmnFm ∧ ∗Fn + V ∗ 1 (2.11)

The gauge group G has Lie algebra (2.8)

[Zx, Za] = −N b
aZb [Za, Zb] = 0 (2.12)

This can be viewed as compactification on a space N that is a T d bundle over a circle [21].

This compactifying space looks locally like the (d + 1)-dimensional group manifold G, and

is in fact the group G identified under the action of a discrete subgroup Γ ⊂ G which acts

from the left [21].

Dimensional reduction on a group manifold G would give a theory with a gauge sym-

metry GL ×GR arising from the isometry group GL ×GR of the group manifold, with GL

acting from the left and GR from the right. Identifying under the action of a discrete sub-

group of Γ ⊂ GL acting from the left breaks the GL symmetry, but the GR isometry is left

intact, so that the theory has at least GR gauge symmetry. (Generically, GL is completely

broken, but if there is a subgroup commuting with Γ, it will break to that subgroup.)

Choosing a vacuum configuration will spontaneously break the gauge symmetry further to

the subgroup preserving the vacuum [21]. The Lagrangian (2.11) is a consistent truncation

of that obtained from reduction on a group manifold G, in which only the gauge fields Am

for GR are kept, while the ones for GL are set to zero. As a result, it is also a consistent

truncation for the reduction on G/Γ, and contains all the gauge fields for the case in which

identifying under Γ breaks all of GL.

It is useful to consider a matrix representation of the gauge algebra

[tx, ta] = −N b
atb, [ta, tb] = 0 (2.13)

– 6 –
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This algebra can be represented by the (d + 1) × (d + 1) matrices

tx =

(
−Na

b 0

0 0

)
ta =

(
0 ea

0 0

)
(2.14)

where ea is the d-dimensional column vector with a 1 in the a’th position and zeros every-

where else. Coordinates x, za can be introduced locally for the group manifold G, with the

group element g = g(x, za) ∈ G given by

g =

((
e−Nx

)a
b za

0 1

)
(2.15)

Then the left-invariant Maurer-Cartan forms, P = Pmtm = g−1dg are given by

P x = dx P a =
(
eNx

)a
bdzb (2.16)

The Pm are dual to the left-invariant vector fields

Zx =
∂

∂x
Za =

(
e−Nx

)b
a

∂

∂zb
(2.17)

which generate the gauge algebra (2.12) and so the gauge algebra is given a geometric in-

terpretation by the lift of the n-dimensional theory to a compactification of an (n+ d+1)-

dimensional theory on a (d + 1)-dimensional internal space. Note that the left-invariant

vector fields generate the right-acting group GR. We may also define the right-invariant

one-forms P̃ = P̃mtm = dgg−1

P̃ x = dx P̃ a = dza + Na
bz

bdx (2.18)

which are dual to the right-invariant vector fields

Z̃x =
∂

∂x
− N b

az
a ∂

∂zb
Z̃a =

∂

∂za
(2.19)

which generate the left-acting group GL. The full gauge algebra GL×GR of the group man-

ifold G is generated by the vector fields (Zm, Z̃m). The left-invariant Zm remain globally

defined after identifying by the discrete group Γ ⊂ GL, but the Z̃m generally will not be.

We now turn to the discrete subgroup Γ. The torus bundle over a circle is obtained

from the compactification of this non-compact group manifold under the identification by

a discrete subgroup Γ, acting from the left. The left action of

h(α, βa) =

((
e−Nα

)a
b βa

0 1

)
(2.20)

is

g(x, za) → h(α, βa) · g(x, za) (2.21)

and acts on the coordinates through

x → x + α za → (e−Nα)abz
b + βa . (2.22)

– 7 –
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The discrete subgroup is Γ = {h(α, βa) ∈ GL | α, βa ∈ Z} and we can identify the group

manifold G under Γ. This gives a compact space G/Γ [21].

In this example we have seen that the lift of the n-dimensional theory to a (n+ d+1)-

dimensional compactification led to a geometric interpretation of the gauge algebra (2.12).

In the following sections we extend this idea and construct backgrounds on which a part,

or all, of the gauge algebra (2.8) has a natural geometric action. In particular we shall

be interested in generalising the above discussion to compactifications involving a B-field,

and to non-geometric compactifications.

2.2 T-folds and the B-field

Reduction on T d followed by reduction on S1 with a GL(d, Z) twist is, as we have seen,

equivalent to compactification on a T d bundle over a circle, which is also a twisted torus.

In string theory, however, the twist on the S1 can be by any element of O(d, d; Z). For

twists in the geometric subgroup ∆(Z), this is equivalent to reduction on a twisted torus

with flux. However, for twists involving T-duality the result is not equivalent to reduction

on any geometric space with flux, but can instead be viewed as reduction on a T-fold,

a non-geometric space with transition functions including T-dualities [7]. Locally, these

look like T d bundles, but the transition functions between the fibres on overlaps of patches

on the base include O(d, d; Z) transformations. These twisted reductions over a circle are

among the simplest examples of T-folds.

2.3 The doubled torus

Conventional reduction on T d with coordinates za gives a theory with O(d, d) symmetry,

and this symmetry can be made manifest in a doubled formalism in which an extra d

coordinates z̃a that are conjugate to the d winding numbers are introduced, to give a

doubled torus T 2d [7] with periodic coordinates X
A = (za, z̃a). As reviewed above, the

reduction with a twist by a GL(d, Z) torus diffeomorphism is equivalent to compactification

on a space which is a T d torus bundle over a circle. More generally, a non-geometric

reduction with twist in O(d, d; Z) can similarly be represented as a reduction in the doubled

formalism on a T 2d bundle over S1 with monodromy in O(d, d; Z). This representation gives

the monodromy a geometric interpretation as an element of the T 2d mapping class group, as

O(d, d; Z) ⊂ GL(2d; Z). In general, the data specifying a T-fold over a base M also specifies

a doubled torus bundle over M with fibres T 2d, and the T-fold reduction can be re-expressed

as a compactification in the doubled formalism on the doubled torus bundle over M [7].

For the twisted reduction on a circle, the T 2d has coordinates X
A and the base has

coordinate x, while the set of 2d+1 natural one-forms on the corresponding doubled torus

bundle over the circle are

PA =
(
eNx

)A
BdX

B P x = dx (2.23)

These generalise the one-forms (2.16). This (2d + 1)-dimensional space T2d+1 is a T 2d
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bundle over S1:

T 2d →֒ T2d+1

↓
S1

The local description of the background in terms of d+1 coordinates is recovered from

the duality-covariant doubled torus picture by choosing a polarisation [7], which selects d

coordinates za from the 2d coordinates X
A for each point on the base as coordinates on

the physical spacetime.

More generally, consider a T 2d bundle over a base M (in the examples considered

above, M is a circle). In a patch Uα of the base M (where Uα is open and contractible),

the background looks like Uα×T 2d. To recover the theory in the physical (d+1)-dimensional

space, we choose a projection which determines which d of the 2d coordinates X
A will be

treated as spacetime coordinates and which d coordinates will be treated as conjugate to

the winding modes. In the T 2d fibre over the patch Uα, a polarisation is specified by a

constant projector Πα where Πα : Uα × T 2d → Uα × T d, which selects coordinates za on a

T d sub-manifold of T 2d:

za = Πa
AX

A (2.24)

The physical space with coordinates za is required to be maximally isotropic with respect

to the O(d, d) metric LAB

LABΠA
aΠB

b = 0 (2.25)

It is useful to define the complement Π̃ which projects onto the auxiliary coordinates

z̃a = Π̃aAX
A

It is also useful to introduce the polarisation tensor

ΘÂ
A =

(
Πa

A

Π̃aA

)

so that

X
Â = ΘÂ

AX
A :=

(
za

z̃a

)
(2.26)

For each point on the base, the fibre geometry is encoded in a ‘generalised metric’ MAB ,

which is a symmetric 2d×2d matrix satisfying the constraint (2.3) so that it parameterises

the coset space O(d, d)/O(d) × O(d). Given a polarisation, the metric gab and B-field Bab

on T d, in each patch Uα, are given by

(M−1)ÂB̂ = ΘÂ
A(M−1)ABΘB

B̂ (2.27)

where

(M−1)ÂB̂ =

(
gab −Bbcg

ac

−Bacg
bc gab + gcdBacBbd

)
(2.28)
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The key point is that backgrounds can be considered in which different polarisations

are used in different patches, although they are constant in each patch. We then consider a

covering by such patches {Uα×T 2d}, each with an associated projector Πα. The transition

functions on the overlap between patches Uα and Uβ are elements of1 O(d, d; Z)⋉U(1)2d . If

the {Uα × T d} patch together with transition functions in the geometric subgroup ∆(Z) ⋉

U(1)d of O(d, d; Z) ⋉ U(1)2d, then the physical space, given this choice of polarisation, is

geometric. This is sufficient for the projector Π onto the physical subspace to be globally

defined, but this is not sufficient for the complement Π̃ to be globally defined; this will also

be well-defined if in addition K = 0 so that N is block diagonal. If the transition functions

are not all in the geometric subgroup, then the space is a T-fold.

The transition functions can be viewed in two ways [7]. They can be regarded as

active, with the polarisations defined globally Πα = Πβ and on the overlap Uα ∩ Uβ the

coordinates related by X
I
α = (hαβ)I JX

J
β + αI

αβ where hαβ ∈ O(d, d; Z) and ααβ ∈ U(1)2d.

Alternatively, they can be regarded as passive, with the transition function acting on the

polarisation Θα = h−1
αβΘβ and the coordinates unchanged, Xα = Xβ. We will mostly use

the passive viewpoint in this paper.

In the examples above with a circle base, the structure is encoded in the monodromy

of the duality twist reduction. First let us consider the active perspective. With the

identification x ∼ x + 1, the monodromy in the fibre coordinates is given by

X
Â ∼

(
e−N

)Â
B̂X

B̂ (2.29)

In particular, using the global polarisation, this implies

za ∼
(
e−N

)a
bz

b +
(
e−N

)ab
z̃b (2.30)

so that, if Qx
ab 6= 0 then

(
eN
)ab 6= 0 and the monodromy will mix za with the z̃a. Then the

physical space will be non-geometric. From the passive perspective, it is the polarisation

which is not globally defined so that if Qx
ab 6= 0 no global polarisation will exist.

Next we consider the issue of the geometrisation of the gauge algebra. The vector

fields dual to the one-forms (2.23) are

Zx =
∂

∂x
TA =

(
e−Nx

)B
A

∂

∂XB
(2.31)

These generate, not the gauge algebra (2.8), but a sub-algebra of a contraction of it, given by

[Zx, TA] = −NB
ATB [TA, TB ] = 0 , (2.32)

so that, even though the generators TA have a geometric action as generators of transla-

tions along the T 2d fibres, the gauge algebra (2.8) of the n-dimensional theory does not

have a fully geometric realisation in the doubled torus picture. In particular, the generator

Xx does not have a geometric action on the space. This should not come as a surprise.

1O(d, d; Z) is the group of large diffeomorphisms of T 2d preserving LAB and U(1)2d is the natural torus

action on T 2d.
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The symmetries relating to the components of the B-field along the T d directions have

been given a geometric interpretation by doubling the fibres of the torus, but the B-field

transformation along the base (generated by Xx) does not have a geometric interpretation

in the doubled torus formalism, as the x coordinate is not doubled here.

The doubled space T is in fact a twisted torus of the form T = G/Γ where the (2d+1)-

dimensional (non-compact) Lie group G is generated by the Lie algebra (2.32) and Γ is a

discrete subgroup of G acting from the left. The elements of this discrete subgroup are

labeled by integers α, βA and act on the coordinates as

x → x + α X
A →

(
e−Nα

)A
BX

B + βA (2.33)

Taking the left quotient by Γ fixes the global structure of T .

2.4 The doubled twisted torus

In the reduction of pure gravity reviewed in section 2.1, the reduction with a twist by a

large diffeomorphism of the torus is equivalent to a reduction on a twisted torus. The

gauge group is (d + 1)-dimensional, and the internal space is the twisted torus given by

identifying the group manifold of the gauge group under a discrete subgroup. The gauge

symmetry then has a manifest geometric origin as the isometry group of the internal space.

For the reduction of string theory with an O(d, d; Z) twist, it was proposed in [22] that

the full 2(d + 1)-dimensional gauge group be given a geometric representation as trans-

formations on a 2(d + 1)-dimensional space. This involves doubling the coordinate on the

base circle, introducing a coordinate x̃ conjugate to the winding number on the x-circle,

as well as doubling the d fibre coordinates, as in the doubled formalism reviewed above.

The doubled space is essentially the group manifold of the gauge group, compactified by

identifying under a discrete subgroup, i.e. it is a twisted torus X = G/Γ where G is the

(2d + 2)-dimensional group manifold for the group generated by the Lie algebra elements

satisfying (2.8) and Γ is a (discrete) cocompact subgroup, acting from the left, which

contains information on the global structure of X .

The idea [22] is, then, to seek a doubled space in which all the gauge symmetries are

realised as geometric symmetries, and then discuss the way the local spacetime picture

emerges from choosing a polarisation. In the doubled torus picture, choosing different

polarisations gives the various T-dual backgrounds. However, in the doubled torus, the

only directions which are doubled are torus fibres, while here the base circle is also doubled.

This gives a general framework in which there is a doubled space that is locally a group

manifold. This has been motivated by the case of reductions with duality twists, in which

different T-dual backgrounds arise from different physical slices or polarisations of this

doubled space. This formalism can be applied more generally to theories in n dimensions

similar to those discussed above with a 2D-dimensional gauge group G with Lie algebra

[TM , TN ] = tMN
P TP where the structure constants tMN

P generalise those of (2.8). Then a

natural framework [22] is to consider a doubled internal space given by a group manifold G
of dimension 2D, or the ‘twisted torus’ X = G/Γ for some discrete Γ. When possible, it is

natural to choose Γ so that X = G/Γ is compact. If the n-dimensional theory arises from a
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compactification, then the compactifying space will arise as a D-dimensional polarisation

of X . We will in addition require that G preserve a metric LMN of signature (D,D) so that

tMNP = tMN
QLQP is totally antisymmetric. Generally G will be the semi-direct product

of a subgroup of O(D,D) and a group that does not act on the metric LMN .

In some cases, different polarisations will give T-dual backgrounds, and these cases

will be our main focus here. However, this more general framework encompasses cases

where different polarisations give inequivalent string backgrounds (i.e. the corresponding

sigma-models define distinct conformal field theories). For example, a non-abelian gener-

alisation of T-duality was proposed in [36] and further generalised to Poisson-Lie duality

in [25]. These give transformations between related backgrounds, but which are not equiv-

alent string backgrounds [24]. The doubled twisted torus X in some cases includes different

backgrounds related by Poisson-Lie duality as different polarisations of a doubled twisted

torus, and the framework also proposes a generalisation of Poisson-Lie duality to include

H- and R-fluxes. We will discuss briefly these more general cases here, and further details

will be given in [37].

Let us return to the specific class of examples arising from reduction with a duality

twist, with gauge algebra (2.8). The Lie algebra (2.8) can be represented in terms of

operators acting on the 2(d + 1) coordinates (x, x̃, XA) of the doubled twisted torus X ,

where X
A are the coordinates on the doubled torus fibre T 2d, as

Zx =
∂

∂x
+ NA

BX
B ∂

∂XA
Xx =

∂

∂x̃
TA = ∂A − 1

2
NABX

B ∂

∂x̃
(2.34)

Then Xx generates translations along the new coordinate x̃. The left-invariant one-forms

dual to these vector fields satisfy the Maurer-Cartan equations

dPA − NA
BP x ∧ PB = 0 dQx − 1

2
NABPA ∧ PB = 0 dP x = 0 (2.35)

which are solved by2

PA =
(
eNx

)A
BdX

B Qx = dx̃ +
1

2
NABX

AdX
B P x = dx (2.36)

It is useful to introduce G Lie algebra indices M,N = 1, 2, . . . 2d + 2 so that the

generators TM are

TM =




Zx

Xx

TA


 (2.37)

and the Lie algebra can be written as

[TM , TN ] = tMN
P TP (2.38)

2Note that a coordinate redefinition, as described in [22] has been used to simplify the expressions for

the one-forms.
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For the O(d, d; Z) duality-twist reductions, the only non-vanishing components of the struc-

ture constants tMN
P are

txB
A = −NA

B , tx[AB] = −NAB (2.39)

and those related to these by symmetry. The dual one-forms (2.36) on X can then be

written as PM = PM
IdX

I , where I, J = 1, 2, . . . 2d + 2 coordinate indices on the group

manifold G and twisted torus X . These one-forms satisfy the Maurer-Cartan equations

dPM +
1

2
tNP

MPN ∧ PP = 0 (2.40)

so that the space is parallelisable.

2.4.1 Geometry

To formulate dynamics, we introduce a positive definite ‘generalised metric’ HIJ and three-

form K on the doubled twisted torus X = G/Γ, in addition to the metric L of signature

(D,D). For cases leading to actions of the form (2.6) in which the scalar fields are given

by the 2D × 2D matrix MMN which is independent of the coordinates on X , one can

naturally define the line element and three-form K on X by

ds2 = HIJdX
I ⊗ dX

J K =
1

6
tMNPPM ∧ PN ∧ PN

where the metric HIJ is given by

HIJ = MMNPM
IPN

J

As we shall see in section 4, these can be used to define a sigma-model on X with kinetic

term determined by HIJ and a Wess-Zumino term given by K, and the normalisation of

K is fixed by the requirement that there be a self-duality constraint that can be imposed

on the world-sheet fields. The constant matrix LMN similarly defines a metric LIJ of

signature (D,D) by

LIJ = LMNPM
IPN

J

Then

HIJ = LIK(H−1)KLLLJ (2.41)

Coordinate systems in which LIJ is a constant matrix given by (2.5) are particularly nat-

ural, and in such a coordinate system PM
I is a matrix in O(D,D).

2.4.2 Polarisation

In the doubled torus construction, a polarisation was chosen to specify a physical subspace,

at least locally. Our aim here is to generalise this to the curved case but, as we shall see,

there are new issues that arise. In this subsection, we will consider polarisations for twisted

tori constructed from general 2D-dimensional groups G preserving the metric LMN . We

will start by considering polarisations on a general, possibly non-compact, group manifold
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G, then discuss the structures they give rise to on factoring by a discrete subgroup to give

a (compact) twisted torus G/Γ.

A natural extension of the polarisation Πa
A used in the doubled torus formalism is

to introduce a projector Πm
M (with m,n = 1, . . . .,D) mapping onto a D-dimensional

subspace of the 2D dimensional tangent space, which is totally null (maximally isotropic)

with respect to the metric LMN , i.e.

LMNΠm
MΠn

N = 0 (2.42)

Introducing such a projector at the identity element of the group manifold then defines one

everywhere; in a natural basis, the projector is constant over the manifold. As before, the

complementary projector is denoted by Π̃mM . We say that a subgroup H of G is isotropic

or null if all of the vector fields on G generating H are null with respect to LMN , and if

the dimension of H is D, half that of G, then we say that it is maximally isotropic. The

polarisation splits the tangent space into two halves, and we will consider the case in which

the frame components Πm
M are locally constant, i.e. there is a constant matrix Πm

(α)M in

each patch Uα of G, but there can be different polarisation matrices in different patches.

The polarisation projects the left-invariant generators TM of the right action GR into

Zm = Π̃mMLMNTN , Xm = Πm
MLMNTN (2.43)

There is a corresponding split of the dual one-forms into Pm and Qm. If we denote the

right-invariant generators of the left acting group GL by T̃M , then the polarisation projects

Z̃m = Π̃mMLMN T̃N , X̃m = Πm
MLMN T̃N (2.44)

and these right-invariant generators play an important role here. (Recall that on the

doubled group manifold G, both sets TM and T̃M are globally defined, but on the doubled

twisted torus X = G/Γ, where Γ acts from the left, generally only the left-invariant vector

fields TM and one-forms PM will be globally defined.) The gauge symmetry acts through

the right action of GR, so we will focus on the GR-invariant generators T̃M , which at any

given point gives a GR-invariant basis of the tangent space that is split by the polarisation

into the vectors Z̃m, X̃m. The issue is then whether the split of the tangent vectors defined

by the polarisation can be used to define a D-dimensional submanifold (at least locally)

which can be viewed as a patch of spacetime. This will be the case provided the distribution

defined by the set of D vector fields X̃m is integrable, as we shall now discuss.

An important case is that in which the X̃m close to form a D-dimensional sub-algebra

[X̃m, X̃n] = tmn
pX̃

p (2.45)

which requires that the structure constants and polarisation tensor satisfy

Πp
P tMN

P ΠmMΠnN = 0 (2.46)

Then, by Frobenius’ theorem, the distribution defined by the D vector fields X̃m is inte-

grable so that the polarisation defines a submanifold locally. For this group manifold case,
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it in fact specifies a submanifold globally. The X̃m generate a D-dimensional subgroup G̃

of G. This acts on G through the left action G̃L ⊂ GL and the submanifold selected by the

polarisation is the D-dimensional left coset G/G̃L. There is a natural action of GR on this

coset G/G̃L, generated by Zm and Xm. An interesting special case is that in which the

X̃ ’s generate a subgroup G̃L and the Z̃’s also generate a subgroup GL, in which case the

doubled group G is a Drinfel’d double with a Lie algebra which, as a vector space, is g⊕ g̃,

where g is the Lie algebra of GL and g̃ is that for G̃L. Note that the sub-algebras g, g̃ will

not commute in general [25].

In general the X̃ ’s will not generate a sub-algebra, so that the X̃ distribution will not

be integrable and does not define a submanifold. In this case, the polarisation does not

pick a subspace even locally, so that it does not select a physical subspace in which there

is a conventional formulation. If one then tries to lift the polarisation of the Lie algebra to

a polarisation of the coordinates and define a geometry on a subspace, then the resulting

metric and B-field depend explicitly on the auxiliary coordinates and are not ordinary

fields on the subspace; this will be seen explicitly in examples in the next section. This is

precisely the kind of non-geometric reduction introduced in [10]. In such cases, if consistent,

the theory can only be described in a doubled formalism, and this will be discussed in later

sections. Similarly, the complementary polarisation will only define a submanifold if the

Z̃’s generate a subgroup GL, and again this will not be the case in general.

Next we turn to the application of this to the compact twisted torus X = G/Γ. Consider

first the case of a choice of constant Π on G in which (2.46) holds so that the X̃ generate

a subgroup G̃L. The condition for the action of Γ on G to induce a well-defined action of

Γ on G/G̃L is that Γ preserves G̃L, i.e. for all γ ∈ Γ and k ∈ G̃L

γkγ−1 = k′

for some k′ ∈ G̃L. Then taking the quotient of G/G̃L by Γ is well-defined and defines a

subspace of G/Γ. The choice of polarisation on G is then consistent with the action Γ, so

that it is globally well-defined both on G and G/Γ and selects a geometric subspace of G/Γ.

The discrete group Γ acts on the generators T̃M and will map the X̃ ’s to linear com-

binations of X̃’s and Z̃’s. In the geometric case just considered, the action of Γ preserves

the subalgebra G̃L and maps the X̃’s to linear combinations of X̃ ’s . More generally, Γ will

not preserve the subalgebra G̃L and the image of the X̃’s under the action of Γ will include

both X̃’s and Z̃’s. In this case the polarisation on G is not well-defined on the quotient X ,

and this will give a non-geometric background.

In the non-geometric case in which the action of Γ does not preserve G̃L, taking the

quotient by Γ is inconsistent with taking the quotient by G̃L. Then we cannot expect a

global description of the spacetime to exist, and may only recover a conventional spacetime

in local patches. Suppose then that X = G/Γ is covered by contractible patches Uα, each of

which can be viewed as a contractible patch of the group manifold G, and with transition

functions to be discussed below. In the passive formulation, we choose a different constant

polarisation Π(α) in each patch, related by transitions consistent with the action of Γ.

Suppose further that in any given patch, the polarisation selects X̃ ’s that close under

commutation to generate a subalgebra (2.45), and so defines an integrable distribution and
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hence a submanifold of the patch. This submanifold has the local structure of a patch

of G/G̃L. The action of the transition functions on the polarisation will mean that in

different patches, different (conjugate) subgroups will be selected, and the submanifolds of

each patch will not fit together to form a submanifold of X . The result is a non-geometric

space, which is constructed from patches each of which is geometric. That is, in each patch,

the polarisation selects a physical spacetime and there is a conventional local formulation,

but these do not fit together to give a formulation on a spacetime manifold. In general,

there will be no global choice of polarisation. We stress that the condition (2.46) is a

necessary requirement for a conventional spacetime description to exist locally.

Similarly, the condition for the action of G̃L on G to induce a well-defined action of

G̃L on G/Γ is that G̃L preserves Γ, i.e. for all γ ∈ Γ and k ∈ G̃L

kγk−1 = γ′

for some γ′ ∈ Γ. Then taking the quotient of G/Γ by G̃L is well-defined and defines a

subspace of G/Γ.

2.4.3 Physical interpretation

We can think of the doubled formalism as describing a ‘universal’ string background which

includes many different string backgrounds, each given by a different choice of polarisation.

In the case in which the different choices of polarisation are related by T-dualities or other

symmetries, they give physically equivalent backgrounds. However, the new formalism

on a doubled twisted torus can also incorporate backgrounds related by the non-abelian

duality of [36] or the Poisson-Lie duality of [25]. These are ‘duality’ transformations that

relate backgrounds that are not equivalent string backgrounds [24] so that they are not

string symmetries, but instead take one string background to another, physically inequiv-

alent background [24].

A simple example of a doubled group is the case in which G = G× G̃ with G generated

by the Z̃’s and G̃ generated by the X̃ ’s. Then one polarisation gives the background

given by the group manifold G, another gives the background given by the group manifold

G̃, but in general giving distinct string backgrounds. For G/Γ with Γ = Γ1 × Γ2 with

G/Γ = (G/Γ1) × (G̃/Γ2), the two polarisations would give backgrounds G/Γ1 or G̃/Γ2.

Some polarisations might lead to conventional geometric backgrounds, while others

might lead to T-folds. Any of these can give consistent string backgrounds, provided other

sectors are added to ensure conformal and modular invariance, so that a good string back-

ground is rewritten in terms of a polarisation of a doubled twisted torus. However, in

general a doubled twisted torus that has some polarisations that give good string back-

grounds may also have other polarisations whose status is less clear. These will be given by

different polarisation projectors in different patches related in overlaps by discrete trans-

formations, and such a polarisation will lead to a generalisation of a T-fold in which the

transition functions involve these discrete transformations. The key issue is then whether

these discrete transformations are symmetries of the string theory: this is essential for

these to be candidate backgrounds for string theory.
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The natural set of discrete transformations here is the group Aut(G; Γ, L) of automor-

phisms of G that preserve Γ and the metric LMN , and this will then have a natural action

on the theory defined on G/Γ. For example, for G = R
2D, Γ = Z

2D so that G/Γ = T 2D,

then Aut(G; Γ, L) = O(D,D; Z), the T-duality group which is a symmetry of the string

theory. We expect that in general different polarisations will be related by the action of this

group, and that this group will provide the discrete transition functions relating patches

of the twisted torus. The key issue here is whether Aut(G; Γ, L) is a symmetry of string

theory, or if not, then which subgroup is. Only transition functions that are symmetries

of the physics can lead to good string backgrounds, and only if polarisations are related

by symmetries do they define equivalent backgrounds. Proper T-dualities acting on torus

fibres are symmetries and such transitions give rise to T-folds. Other discrete transforma-

tions arising in this way include non-abelian T-dualities or Poisson-Lie dualities. There

is evidence that such ‘dualities’ are generally not symmetries of string theory [24], so a

background with such transitions would not be a good string background in general.

The issue is then what subgroup of Aut(G; Γ, L) is a symmetry of string theory and can

be used in transition functions. This will clearly contain proper T-dualities, but there is

evidence that certain generalisations of T-duality should also be allowed, although generic

Poisson-Lie dualities presumably should not. One of our motivations is to consider such

cases, and to investigate the generalisations of the usual T-dualities that are suggested

by the formalism, such as those proposed in [10]; these involve dualising a circle direction

which is not isometric, so that conventional T-duality is not possible.

A related issue is that of whether two polarisations are physically equivalent. In

the case of the doubled torus formalism, all polarisations that are related to each other

by O(d, d; Z) T-duality transformations on the T 2d doubled torus fibres are physically

equivalent. In the doubled twisted torus formalism, some polarisations will again be related

to others by T-dualities and will lead to equivalent representations of the physics. However,

others will not be so related, and the question arises as to whether they are then physically

equivalent. They will typically be related by the action of Aut(G; Γ, L), but only if they

are related by proper string symmetries will they be equivalent.

In summary, there are a number of cases. In each 2D-dimensional patch, there is a

polarisation projecting the tangent space at each point onto a D-dimensional subspace. If

this distribution is integrable (i.e. if (2.46) is satisfied), then this selects a D-dimensional

submanifold of the patch. There is then a description of the spacetime in this patch as

a patch of G/G̃L. If the polarisation is globally defined on X , then it selects a physical

subspace which is a submanifold, given by identifying G/G̃L under the action of Γ, and

this gives a geometric background.

If the distribution in each patch is integrable but the polarisation is not globally de-

fined on G/Γ (i.e. not preserved by the action of Γ), then the result is a generalisation of

a T-fold, with a good doubled formulation on G/Γ but where a D-dimensional spacetime

can only be selected locally in each patch, and these spacetime patches do not fit together

to give a global spacetime.

Finally, if the distribution selected by the polarisation is not integrable, then although

the polarisation splits the tangent space, it does not define a submanifold even locally, so
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that no local spacetime and no local geometric picture can emerge. More will be said about

the interpretation of such cases below.

2.5 T-duality and R-flux

Consider the case of the generic algebra of the form (2.8) arising from a reduction with a

duality twist. The monodromy on going around the x circle reflects the fact that transla-

tions in the x direction are not an isometry — the metric and fields depend non-trivially

on x — so that conventional T-duality in the x direction is not possible. If x-translations

were an isometry, a conventional T-duality [9] would have been possible and naturally

formulated using the coordinate x̃ on a dual circle. It was conjectured in [10] that there

should be a generalised T-duality in the x-dependent case which again involves introducing

a dual coordinate x̃, and which exchanges x and x̃. The result is then a reduction with

duality twist monodromy around the x̃ circle, and the duality exchanges Zx with Xx. This

produces a theory with the gauge algebra

[Xx, TA] = −NB
ATB [TA, TB ] = −NABZx (2.47)

with corresponding one-forms

PA =
(
eNx̃

)A
BdX

B P x = dx +
1

2
NABX

AdX
B Qx = dx̃ (2.48)

Decomposing TA into Za and Xa, the twist matrix may be written as (using NAB = −NBA)

NA
B =

(
Qa

bx Rxab

fab
x −Qb

ax

)
(2.49)

The gauge algebra is then

[Xx, Za] = −Qa
xbZb + fab

xXb [Xx,Xa] = Qb
xaXb + RxabZb

[Za, Zb] = fab
xZx [Xa, Zb] = Qb

xaZx [Xa,Xb] = RxabZx (2.50)

with all other commutators vanishing.

From this, we see in particular that the x̃-twist can incorporate an R-flux as well as a

Q-flux. Consider the case where only Rxab 6= 0. The left-invariant algebra is then

[Xx,Xa] = RxabZb [Xa,Xb] = RxabZx (2.51)

with all other commutators vanishing. The left-invariant one-forms, dual to the vector

fields which generate this algebra, are

P x = dx +
1

2
Rxabz̃adz̃b P a = dza + Rxabx̃dz̃b

Qx = dx̃ Qa = dz̃a

(2.52)

The right-invariant generators of the left action GL satisfy the algebra

[X̃x, X̃a] = −RxabZ̃b [X̃a, X̃b] = −RxabZ̃x (2.53)
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with all other commutators vanishing. We see that in this case the generators X̃ do not

close to form a subalgebra and therefore a conventional target space description cannot be

recovered as a coset locally, as described above. Attempting to choose a polarisation that

selects the Z’s as the geometric generators does not work, as the corresponding distribution

is not integrable. The only description we have of such backgrounds is through the doubled

formalism. More generally, the structure constant

Πp
P tMN

P ΠmMΠnN = Rmnp

is an obstruction to the closure of the algebra generated by X̃m and means that, even locally,

this polarisation has no conventional spacetime description. R-flux will be discussed further

at the end of the next section in the context of particular examples.

2.6 Drinfel’d doubles and doubled twisted tori

One case of interest is that in which the generators of G consist of Zm generating a D-

dimensional subgroup G and Xm generating a D-dimensional subgroup G̃. The group will

not in general be a product G× G̃, but instead the algebra will have ‘cross-terms’ [Xm, Zn]

and be of the form

[Zm, Zn] = fmn
pZp [Xm, Zn] = fnp

mXp − Qn
mpZp [Xm,Xn] = Qp

mnXp (2.54)

Then G and G̃ are both null with respect to the natural metric LMN (i.e. the generators

of G are all null and mutually orthogonal, and similarly for the generators of G̃) and we

have a triple of Lie groups (G, G, G̃). In this context, the triple of Lie groups (G, G, G̃)

is often referred to as a Manin triple and the doubled group G with metric of signature

(D,D) is said to be a Drinfel’d double [25–29]. The two complementary D-dimensional

group manifolds G and G̃ are recovered as the cosets G/G̃L and G/GL respectively.

For a given G, there may be different choices of subgroups G, G̃ ⊂ G such that in each

case (G, G, G̃) is a Manin triple, giving different decompositions of the same Drinfel’d dou-

ble. In this way different Manin triples may correspond to different choices of polarisation,

although not all choices of polarisation will give a Manin triple.

An example of a Drinfel’d double is the cotangent bundle for a D-dimensional group

G, so that G = T ∗G. In this case G̃ = R
D and the doubled group is the semi-direct product

G = G ⋉ R
D generated by the Lie algebra

[Zm, Zn] = fmn
pZp [Xm, Zn] = fnp

mXp [Xm,Xn] = 0 (2.55)

This is parameterised by g ∈ G and coordinates x̃m on G̃ = R
D. A basis of left-invariant

one-forms on G is

Pm = (g−1dg)m Qm = dx̃m + fmn
px̃pP

n

where the one-forms Pm and Qm are dual to the vector fields Zm and Xm respectively. The

Lie algebra (2.55) is encoded in the Maurer-Cartan equations for Pm and Qm as described

in previous sections.

Note that the one-forms Pm = Pm
idxi and ℓ̃m = dx̃m are left-invariant one-forms on

G and G̃ = R
D respectively and therefore give a globally defined basis of left-invariant
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forms on G×R
D, but not on G⋉R

D. The action of G̃ = R
D on G is trivial and so the Pm

lift to left-invariant forms on G; however, the non-trivial action of G on G̃ means that the

dx̃ are not globally defined on the double G. Instead, the globally defined one-forms on G
are Qm, which are related to the forms dx̃m on G̃ by the ‘twisting’ dx̃m → dx̃m + b̃mnPn

where b̃mn = fmn
px̃p. The left-invariant one-forms may be written in a basis independent

way as P = PmTm and Q = QmT̃m, where

P = g−1dg Q = dx̃ − [x̃, P ]

with x̃ = x̃mT̃m and where Tm and T̃m generate a matrix representation of the alge-

bra (2.55). It is not hard to show that the left action of G on the coordinates xi and x̃m is

δxi = (P−1)m
iαm δx̃ = g−1α̃g

with parameters α, α̃. The action of G̃L on the coordinates xi parameterising G = G/G̃L

is trivial but G has a nontrivial action on the coordinates x̃m which parameterise G̃. It

is then easy to see that the natural left-invariant forms (P, ℓ̃) on G × G̃ are not invariant

under G but transform as

δP = 0 δℓ̃ = −[P, δx̃] (2.56)

The GL-invariant forms (P,Q = ℓ̃ + [P, x̃]) can be thought of as a ‘twist’ of (P, ℓ̃).

A particular feature of the case in which G is a Drinfel’d double is that there are two

natural polarisations, one corresponding to the coset G/G̃L and one leading to the dual one

G/GL, and the dual one can be treated in the same way as the one corresponding to G/G̃L

was in section 2.4. The doubled twisted torus is given by identifying the Drinfel’d double

by a subgroup Γ ⊂ GL, so that X = G/Γ is compact. If the action of Γ preserves and is

preserved by G̃, then the quotient X/G̃ is well-defined and there is a global description of

the spacetime resulting from this polarisation, similarly for X/G. For the example given

above in which G = T ∗G, the action of Γ preserves and is preserved by R
D and so the

quotient X/R
D is always well-defined and corresponds to the D-dimensional twisted torus

N = G/Γ′, where Γ′ ⊂ Γ acts only on the coordinates of G and leaves R
D invariant.

Recovering a conventional spacetime description in this case simply corresponds to the

natural bundle projection on T ∗N .

In general, the action of Γ need not preserve or be preserved by G̃ (or G), in which

cases the quotients X/G̃L (or X/GL) will not be well-defined and there will be no global

spacetime from these choices of polarisation. Conventional spacetime patches can be re-

covered locally as patches of G/G̃L (or G/GL), as described in sections 2.4.1 and 2.4.2.

Only in the cases in which the transitions between patches are through true symmetries of

the string theory can such non-geometric backgrounds be string backgrounds.

The addition of structure constants associated with H- and R-fluxes deforms the al-

gebra (2.54) to

[Zm, Zn] = fmn
pZp + KmnpX

p [Xm,Xn] = Qp
mnXp + RmnpZp

[Xm, Zn] = fnp
mXp − Qn

mpZp
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so that neither G nor G̃ are subgroups of the doubled group G. The physics of the doubled

geometry corresponding to such H- or R-twisted Drinfel’d doubles will be explored further

in [37]. In the absence of R-flux, the Xm close to generate G̃ and this is the case analysed

in detail in section 2.4.

2.6.1 Polarisations and group actions

For a Drinfel’d double, one can define a basis of right- and left-invariant forms on the groups

G and G̃, which we denote by (rm, ℓm) and (r̃m, ℓ̃m) respectively.3 The actions of these

factor groups on each other reflect how the two groups are ‘twisted’ together to form G.

A simple way to characterise the action of the sub-groups on each other is to look at

the adjoint action of G on the (matrix) generators Tm ∈ g and T̃m ∈ g̃, selected by a choice

of polarisation, Tm = Πm
MTM and T̃m = Π̃mMTM . We use g and g̃ to denote the Lie

algebra of G and G̃ respectively and the adjoint action of G on the generators of G defines

matrices A, b and β by

g−1

(
Tm

T̃m

)
g =

(
Am

n bmn

βmn (A−1)mn

)(
Tn

T̃n

)
(2.57)

Similarly, the adjoint action of G̃ on the generators of G defines matrices Ã, b̃ and β̃ by

g̃−1

(
Tm

T̃m

)
g̃ =

(
(Ã−1)m

n b̃mn

β̃mn Ãm
n

)(
Tn

T̃n

)
(2.58)

Note that b, β, b̃, β̃ are antisymmetric. The matrices A, b and β depend on xi only and

encode the adjoint action of G and the matrices Ã, b̃ and β̃ depend on x̃i only and encode

the adjoint action of G̃. Am
n(g) is the adjoint action of G on g so that g−1rg = ℓ or,

in components, rnAn
m = ℓm. Similarly, Ãm

n(g̃) is the adjoint action of G̃ on g̃ so that

r̃nÃn
m = ℓ̃m. The adjoint action preserves the metric LMN so the 2D×2D matrices whose

block form is given in (2.57) and (2.58) are in O(D,D). The form of the 2D × 2D adjoint

matrices is determined by the polarisation chosen and different choices of polarisation will

give different matrices A, b, β, Ã, b̃ and β̃.

The non-trivial twisting together of G and G̃ means that the right- and left-invariant

one-forms on G, denoted by P̃M and PM respectively, are not simply

PM̂ = (ℓm, ℓ̃m) P̃M̂ = (rm, r̃m)

but are twisted together in a more complicated way. In the case of a Drinfel’d double,

where the polarisation is such that both Tm and T̃m generate subgroups of G, the adjoint

actions simplify. In particular, the adjoint action of G preserves g so that g−1Tmg = Am
nTn

and bmn = 0. Similarly, the adjoint action of G̃ preserves g̃ so that g̃−1T̃mg̃ = Ãm
nT̃n and

β̃mn = 0. We shall see that more general groups G, which are not Drinfel’d doubles, do

not simplify in this way.

3(rm, r̃m) are right-invariant and (ℓm, ℓ̃m) are left-invariant. For g ∈ G and g̃ ∈ eG, we can write

ℓ = g−1dg, ℓ̃ = g̃−1dg̃, r = dgg−1 and r̃ = dg̃g̃−1.
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Let us consider group elements h ∈ G that can be written in the form h = gg̃, where

g ∈ G and g̃ ∈ G̃. The left-invariant one-form can be written as

P = h−1dh = ℓm(g̃−1Tmg̃) + r̃m(g̃−1T̃mg̃)

or, using the definitions of the adjoint action of G̃ on the Lie algebra of G given above, as

P =
(

ℓm r̃m

)( (Ã−1)m
n b̃mn

0 Ãm
n

)(
Tn

T̃ n

)

It is useful to write this block decomposition of the one-forms as

P = Φ̃MWM
N (x̃)TN

where Φ̃M = (ℓm, r̃m). The information on the twisting together of the two subgroups is

contained in W which depends only on x̃.

We now return to the example given above in which G̃ is abelian (so that ℓ̃m = r̃m =

dx̃m) and suppose that G is a semi-simple group with structure constants fmn
p so that

G = G ⋉ R
D. We choose a matrix representation of the generators

Tm =

(
tm 0

0 tm

)
T̃m =

(
0 hmntn
0 0

)
(2.59)

where hmn = 1
2fmp

qfnq
p is the non-degenerate Cartan-Killing metric of G which raises and

lowers indices on the structure constants and tm is a D × D matrix representation of g so

that [tm, tn] = fmn
ptp. A general element h = gg̃ of G may then be written as

h =

(
g 0

0 g

)(
1 x̃

0 1

)
=

(
g gx̃

0 g

)

and the one-forms (2.56) may be read off from

P =

(
g−1dg dx̃ + [P, x̃]

0 g−1dg

)

We then see explicitly that

(Ã−1)m
n = δm

n b̃mn = −fmn
px̃p

so that the adjoint action of G̃ on g̃ is trivial, as one would expect for an abelian group

G̃ = R
D.

Alternatively, we could consider the parameterisation h = g̃g so that the left-invariant

one-forms are more naturally written as

P =
(

rm ℓ̃m

)(Am
n 0

βmn (A−1)mn

)(
Tn

T̃ n

)
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or schematically

P = ΦN̂VN̂
M̂ (x)TM (2.60)

where ΦM̂ = (rm, ℓ̃m). The information on the twisting together of the two subgroups is

now contained in VN̂
M̂ (x) which depends only on the xi. For the polarisation choosing the

xi as physical coordinates, it is this parameterisation leading to a twist V depending only

on the xi that is the most useful.

For the G = G ⋉ R
D example, this parametrisation may be written in terms of the

basis of generators (2.59) as

h =

(
1 x̃

0 1

)(
g 0

0 g

)
=

(
g x̃g

0 g

)

In this parameterisation, the left-invariant one-forms are

P =

(
g−1dg g−1dx̃g

0 g−1dg

)

so that Pm = (g−1dg)m and Qm = (A−1)m
ndx̃n. It is not hard to see why this parameteri-

sation h = g̃g is most useful; we shall be interested in recovering a conventional description

as the left-acting quotient of the doubled group by G̃ and the left action of G̃ on elements

of G is manifest precisely in the parameterisation h = g̃g. Similarly, if we were interested

in the quotient G/G̃R, the appropriate parameterisation to consider would be the one with

h = gg̃ described above.

2.6.2 Recovering the physical background fields

For a Drinfel’d double, using the parameterisation h = g̃g giving

P = ΦMVM
N (x)TM

we can define a G̃L-invariant metric which depends on the coordinates xi only by

HMN (x) = MPQVM
PVQ

N

With a polarisation tensor ΘM̂
M , we can define

HM̂N̂ (x) = ΘM̂
MHMN (x)ΘN

N̂

whose components define a metric gmn and B-field Bmn by

HM̂N̂ (x) =

(
gmn + Bmpg

pqBqn Bmpg
pn

gmpBnp gmn

)
(2.61)

The metric gmn(x) and B-field Bmn(x) depend only on the xi coordinates, are manifestly

G̃L-invariant and therefore

gij = gmnrm
ir

n
j Bij = Bmnrm

ir
n

j (2.62)
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give a metric and B-field which are well-defined on the coset G/G̃L. In general, the two-

form B, coming from the G̃L-invariant doubled metric (2.61), is not necessarily the only

contribution to the physical H-field strength. There may also be a contribution coming

from the natural GL × GR-invariant three-form on the doubled group

K =
1

6
tMNPPM ∧ PN ∧ PP

It will be shown in section 6 that, when the doubled group is a Drinfel’d double, the

physical H-field strength on the coset G/G̃L is given by

H = dB − 1

2
d
(
rm ∧ ℓ̃m

)
+

1

2
K (2.63)

This expression may seem surprising but, as we shall see in section 6, its form arises

quite naturally from the world-sheet description of the doubled geometry. Moreover, when

the doubled group is a Drinfel’d double, one may use the Maurer-Cartan equations dual

to the algebra (2.54), to show that K = d(rm ∧ ℓ̃m), and so this expression for the H-

field strength simplifies to

H = dB

and so, in the case where the doubled group is given by a Drinfel’d double, the physical

metric and B-field may be read off directly from the G̃L-invariant metric HMN (x).

As an example, we return to the case in which G̃ is abelian, so that G = T ∗G. Then

ℓ̃m = dx̃m and let the structure constants of G be fmn
p as before. If we choose the

parameterisation h = g̃g ∈ G, then one can show that βmn = 0 and Am
n is the adjoint

action of the group G; i.e. ℓm = rnAn
m. The left-invariant one-form may then be written as

PM̂ =
(

rm ℓ̃m

)(Am
n 0

0 (A−1)mn

)

so that the metric is given by

ds2 = δmnAm
pA

n
qr

p ⊗ rq = δmnℓm ⊗ ℓn

and B = 0. In this case, it is not hard to show that K = d(rm∧ ℓ̃m) and so the H-field van-

ishes.

Conversely, we can consider the polarisation where we take the physical coordinates

xm to parameterise the abelian group R
D, and G̃ to have structure constants Qmn

p so

that [T̃m, T̃ n] = Qmn
pT̃

p and G = T ∗G̃. Again, the natural parameterisation to choose is

h = g̃g so that

P =
(

rm ℓ̃m

)(Am
n 0

βmn (A−1)mn

)(
Tn

T̃ n

)

where βmn = Qmn
px

p and Am
n = δm

n, since G = R
D and so ℓm = rm = dxm. The G̃L-

invariant metric HMN (x) then gives a metric and B-field specified by (g+B)−1 = 1+β. In

the special case where the doubled geometry is six-dimensional and the only non-vanishing

structure constant of G̃ is Qyz
x = m ∈ Z, then βyz = mx and the background is a cover

of the familiar T-fold. Here too, one may show that K = d(rm ∧ ℓ̃m) and so K does not

contribute to the physical H-field.
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2.6.3 General case

Consider now the case of a general doubled group G which is not a Drinfel’d double, so

that there may be H-flux and/or R-flux. In general the vielbein PM
I will depend on all

coordinates, both x and x̃. Nonetheless, the G̃L-invariant generalised metric

HM̂N̂ (x) = MP̂ Q̂V P̂
M̂VQ̂

N̂

can still be used to define a metric and H-field using (2.61) and (2.63), but now these fields

will depend on both x and x̃ in general, so their interpretation is unclear. In those cases in

which VM
N and rm can be chosen to depend only on x, the background will be geometric

locally. There will be local fields gij(x), Bij(x), although there may be non-trivial patching

as in T-folds. In other cases where dependence on x̃ cannot be avoided, then the resulting

configuration is not even locally geometric, and the x-polarisation will involve background

fields depending on the dual coordinates x̃.

For a given polarisation, a natural way of introducing coordinates (in a neighbourhood

of the identity) is through the exponential parameterisation

h = exp(x̃mT̃m) exp(xmTm)

In the case in which the Xm generate a subgroup G̃, then g̃ = exp(x̃mT̃m) ∈ G̃. Let

k = exp(xmTm) so that h = g̃k. Then defining r = dkk−1, ℓ̃ = g̃−1dg̃, we can expand the

forms as

r = rmTm + rmT̃m ℓ̃ = ℓ̃mT̃m

where we note that r is in general a linear combination of all generators, since the k are

not elements of a subgroup, but are elements of the full doubled group G. Since the Tm do

not generate a subgroup, the adjoint action of {k} on g does not preserve g and we have

k−1Tmk = Am
nTn + bmnT̃ n

so that

PM̂ =
(

rm q̃m

)(Am
n bmn

βmn (A−1)mn

)

where q̃m = ℓ̃m + rm and we again have an expression of the form

P = ΦM̂VM̂
N̂ (x)TN̂

As V depends only on x, again a metric and B-field depending only on x are obtained

using (2.61), but now the H-field strength also gets a contribution from the three form K
and the expression (2.63) generalises to

H = dB − 1

2
d (rm ∧ q̃m) +

1

2
K (2.64)

As an example, consider the group generated by the algebra

[Zm, Zn] = KmnpX
p [Zm,Xn] = 0 [Xm,Xn] = 0
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The GL-invariant one-forms are

Pm = dxm Qm = dx̃m − 1

2
Kmnpx

pdxn

It is not hard to show that

rm = dxm rm =
1

2
Kmnpx

prn q̃m = Qm + Kmnpx
prn

Also, Am
n = δm

n, βmn = 0 and bmn = Kmnpx
p. This gives P = ΦMVM

N (x)TN , where

VM̂
N̂ (x) =

(
δm

n Kmnpx
p

0 δm
n

)

and ΦM = (dxm, q̃m). The metric is given by

ds2 = δmndxm ⊗ dxn

so that the spacetime is locally R
D. The global structure of the spacetime is determined

by Γ and in the discussions which follow we shall usually choose Γ so that the spacetime

is compact which, in this case, gives a D-dimensional torus. The physical H-field strength

on TD is given by (2.64) where

K = −1

6
Kmnpdxm ∧ dxn ∧ dxp (2.65)

We also have the contributions

db =
1

2
Kmnpdxm ∧ dxn ∧ dxp 1

2
d (rm ∧ q̃m) =

1

4
Kmnpdxm ∧ dxn ∧ dxp (2.66)

Substituting (2.65) and (2.66) into (2.64), we find that the physical H-field strength is

H =
1

6
Kmnpdxm ∧ dxn ∧ dxp

More generally, there may be non-trivial R-flux. Then the T̃m do not close to give a

subalgebra and the expansion of the forms ℓ̃ is in general a linear combination of all genera-

tors, so that ℓ̃ = ℓ̃mT̃m + ℓ̃mTm. The left-invariant one-forms on G can be expanded to give

PM̂ =
(

pm q̃m

)(Am
n bmn

βmn (A−1)mn

)

where pm = rm + ℓ̃m and q̃m = ℓ̃m + rm and we again have an expression of the form

P = ΦMVM
N (x)TM

As before, we extract x-dependent fields gmn and Bmn from HMN (x). The main difference

in the R-flux case, where ℓ̃m 6= 0, is that the physical metric

ds2 = gmn(x)pm ⊗ pn

now depends explicitly on x̃i through the one-forms pm = rm + ℓ̃m and so it is not possible

to eliminate the x̃i-dependence completely if the T̃m do not generate a subgroup of G.

Similarly, it is not possible to remove all x̃i-dependence from the H-field which is given by

the expression

H = dB − 1

2
d (pm ∧ q̃m) +

1

2
K

The issues discussed here will be illustrated by further examples in the next section.
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3 Examples

We shall now apply the formalism developed in the previous section to a specific example.

Starting with the three-dimensional nilfold N , we explicitly construct the associated five-

dimensional doubled torus bundle T and the six-dimensional twisted torus X . The recovery

of a conventional description of the nilfold and its T-duals from these doubled geometries

will be explicitly demonstrated in each case.

The nilfold is a compact three-dimensional manifold. It may be constructed as a T 2

bundle over a circle S1
x, where the fibration has monodromy in the mapping class group,

SL(2; Z), of the torus fibres. Let za = (y, z) be the coordinates on the T 2 fibre and x the

base circle coordinate with x ∼ x + 1. The twist of the bundle is given by the sl(2) Lie

algebra element fa
b which gives a monodromy ef ∈ SL(2; Z), where

fa
b =

(
0 0

−m 0

)
ef =

(
1 0

−m 1

)
m ∈ Z (3.1)

A globally defined basis of one-forms on the nilfold is

P x = dx P y = dy − mxdz P z = dz (3.2)

The global structure of the nilfold requires the following identification of the local coordi-

nates

(x, y, z) ∼ (x + 1, y + mz, z) (x, y, z) ∼ (x, y + 1, z) (x, y, z) ∼ (x, y, z + 1) (3.3)

which leaves the one-forms Pm = (P x, P y, P z) invariant. A metric g =
∑

m PmPm may

be constructed from these one-forms, giving

gij =




1 0 0

0 1 −mx

0 −mx 1 + m2x2


 (3.4)

and it is this metric that is used in the dimensional reduction ansatz discussed in the

previous section.

Alternatively, the nilfold may be constructed as a twisted torus N = G/Γ where G is

the noncompact Heisenberg group manifold and Γ is a discrete subgroup chosen so that

G/Γ is compact, i.e. Γ is cocompact. The generators of the Heisenberg group G satisfy

commutation relations

[tx, tz] = mty [ty, tz] = 0 [tx, ty] = 0

and a useful matrix representation is

tx =




0 m 0

0 0 0

0 0 0


 ty =




0 0 1

0 0 0

0 0 0


 tz =




0 0 0

0 0 1

0 0 0


 (3.5)
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Using the local coordinates (x, y, z) on the group manifold G, a general element of the

group may be written as

g =




1 mx y

0 1 z

0 0 1


 (3.6)

The one-forms (3.2) are given by P = g−1dg and are invariant under the left-action of the

group G. The discrete group Γ has general element h given by

h =




1 mα β

0 1 γ

0 0 1


 (3.7)

where α, β and γ are arbitrary integers. The nilfold is given by the identification of G under

the left action of Γ. Then the identification g ∼ h·g, with (α, β, γ) given by (1, 0, 0), (0, 1, 0)

or (0, 0, 1), reproduces the identifications of the coordinates (3.3). As the identification is

through the left action, the left-invariant one-forms (3.2) are well-defined on G/Γ.

The noncompact group manifold G admits a natural action of the group from the

left GL and from the right GR. The right action, GR, is generated by the left-invariant

vector fields

Zx =
∂

∂x
Zy =

∂

∂y
Zz =

∂

∂z
+ mx

∂

∂y

and Zy and Zz are Killing vectors of the metric (3.4), whilst Zx is not. Note that the Cartan-

Killing metric for the Heisenberg group, which would automatically be invariant under

GL ×GR, is identically zero, and we are using a non-degenerate metric (3.4) which is only

invariant under a subgroup of GL × GR. Furthermore, the vector fields Zm = (Zx, Zy, Zz)

are invariant under the action of Γ ⊂ GL and so are well-defined on the quotient N = G/Γ.

The one-forms (3.2), dual to these vectors, are also well defined on N .

The right-invariant vector fields Z̃m = (Z̃x, Z̃y, Z̃z) on the group manifold G generate

the left action GL and are given by

Z̃x =
∂

∂x
+ mz

∂

∂y
Z̃y =

∂

∂y
Z̃z =

∂

∂z
(3.8)

Note that Z̃y and Z̃z are Killing vectors of the metric (3.4), whilst Z̃x is not. These vector

fields are not invariant under the action of Γ and transform as

Z̃x → Z̃x + mγZ̃y Z̃y → Z̃y Z̃z → Z̃z − mαZ̃y (3.9)

Then although the three right-invariant vector fields Z̃m are globally defined on G, only

Z̃y is well-defined on the quotient N = G/Γ. Of particular importance is the fact that the

generator Z̃z is not preserved by Γ. The fact that Z̃z is locally defined (on each T 2 fibre)

but not globally defined on N leads to a T-dual description of the background, given by

dualising along the z direction (i.e. with respect to the generator Z̃z), which is a T-fold.

Of particular interest is the use of twisted tori, such as the nilfold, as internal manifolds

in conventional compactifications of string theory and supergravity. Compactification of a
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supergravity theory with metric, B-field and dilaton, with action of the form (2.1) (plus

terms involving other fields), on the nilfold gives a massive supergravity of the form (2.6)

with a non-abelian gauge algebra given by

[Zx, Zz] = mZy [Zx,Xy] = mXz [Zz,X
y ] = −mXx (3.10)

where all other commutators vanish. The symmetries generated by Zm = (Zx, Zy, Zz) arise

from the action of the left-invariant vector fields Zm on the nilfold given above, while the

symmetries generated by Xm arise from B-field antisymmetric tensor transformations. The

gauge algebra is that of the six-dimensional group G⋉R
3 where G is the Heisenberg group.

This compactification can be equivalently constructed as a duality twist reduction of the

supergravity, as described in the previous section, where the twist matrix (2.9) is given by

NA
B =

(
fa

b 0

0 −fa
b

)
(3.11)

with fa
b given in (3.1).

3.1 T-duality

With the choice of metric (3.4), the Heisenberg group manifold has the geometry

ds2
N = dx2 + (dy − mxdz)2 + dz2 B = 0 (3.12)

and has Killing vectors Zy = Z̃y, Zz , Z̃z. On taking the quotient by Γ to obtain the nilfold

background, Zy = Z̃y and Zz are left-invariant and so are Killing vector fields of the

nilfold, while Z̃z remains as a local solution to Killing’s equation, but does not extend to

a globally-defined vector field on the nilfold.

In Buscher’s formulation of T-duality [9], the starting point is a sigma-model whose

target is a torus bundle with a compact abelian isometry group, preserving the H-field

and dilaton as well as the metric. The isometry is then gauged, and the gauge connection

constrained to be trivial. Eliminating the gauge field recovers the original theory, while

integrating out the torus fibres gives the T-dual target. Buscher T-duality then requires a

compact abelian isometry which leaves the background invariant.

The sigma model with the nilfold as target space is constructed from the pull-back of

the left-invariant one-forms (3.2) to the world-sheet and as such there is a manifest rigid

GL symmetry in the world-sheet theory. The application of Buscher’s construction then

requires that there is an abelian subgroup of this rigid GL symmetry which generates an

invariance of the full background. There is such an invariance of the nilfold background

given by the U(1) isometry y → y+ǫ generated by Z̃y = ∂y. The vector field Z̃y is preserved

by Γ and therefore is well-defined on the nilfold. Applying the Buscher construction it was

shown in [3, 38] that the T-dual of the nilfold background (3.12) is given by a three-

dimensional torus with non-trivial B-field

ds2
T 3 = dx2 + dy2 + dz2 B = mxdy ∧ dz (3.13)
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The B-field gives a constant H-flux, with H = mdx∧ dy ∧ dz. The global structure of the

torus is read off from the identifications of the coordinates

(x, y, z) ∼ (x + 1, y, z) (x, y, z) ∼ (x, y + 1, z) (x, y, z) ∼ (x, y, z + 1)

A second invariance of the Heisenberg group manifold G is the abelian isometry z →
z + ǫ. The generator Z̃z = ∂z is globally defined on the Heisenberg group manifold G but

is not globally defined on the nilfold N . Under the shift of the coordinate x → x + 1, the

vector field is not invariant but transforms as

Z̃z → Z̃z − mZ̃y

and so Z̃z is not periodic on N . Strictly speaking, the Buscher rules cannot be applied to

this case, as the Killing vector is not globally well-defined on the nilfold and is, at best,

multi-valued. This problem can be avoided by going to a covering space in which the

periodicity of x is dropped. This covering space is CN = G/Γ′ where Γ′ is the subgroup of

Γ given by elements of the form (3.7) with α = 0. This gives the periodic identifications

y ∼ y + 1 and z ∼ z + 1 while leaving x non-compact, so that CN has topology R × T 2.

On the covering space CN , Z̃z is globally defined and we can consider T-duality along

the z direction using the Buscher rules. Performing the T-duality gives a smooth manifold

CT which again has topology T 2 × R with metric and B-field given by

ds2
T−Fold = dx2 +

1

1 + (mx)2
(dy2 + dz2) B =

mx

1 + (mx)2
dy ∧ dz (3.14)

This background is a conventional geometry, with a non-trivial B-field. However, we are

interested in the background T-dual to the nilfold, with periodic x, suggesting that we now

try to make x periodic. The metric and B field (3.14) are clearly not periodic in x, so this

could not lead to a smooth geometry.

To better understand this background, consider first the T-dual of CN given by the

covering space CT 3 of the T 3 with H-flux m, which is R × T 2 with x the non-compact

coordinate with metric and B-field (3.13). Consider a particular T 2 fibre at some fixed x,

with metric g̃ and B-field B̃, so that Ẽ = g̃ + B̃ is a 2 × 2 matrix given by

Ẽ =

(
1 mx

−mx 1

)
= 1 + xΩ

where

Ω =

(
0 m

−m 0

)

T-dualising along the y and z directions of the T 2 leads to a dual torus background with

metric g and B-field B with E = g + B given by E = Ẽ−1, so that

E =
1

1 + (mx)2

(
1 mx

−mx 1

)
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This is the same result as is obtained by T-dualising CN in the z direction.

Under the shift x → x+1, the B-field of the dual background is shifted B̃yz → B̃yz +m

and so we see that periodically identifying the x coordinate of CT 3 gives a space with an

x-monodromy that is a shift of the B-field, B̃yz → B̃yz +m. This of course gives a T 3 with

H-flux m. Now for the dual space (3.14), under the shift x → x + 1,

E = Ẽ−1 → (Ẽ + Ω)−1

which is a T-duality transformation of E, in O(2, 2; Z). Then the monodromy is a non-

geometric T-duality transformation, resulting in a T-fold. This amounts to what is some-

times described as applying the duality fibrewise.

Locally, the T-fold is a conventional geometry, but the global structure cannot be

understood as a manifold since the monodromy is not in the SL(2; Z) mapping class group

of the T 2 fibres. The non-geometric monodromy of the T 2 fibres of the T-fold background

can be recast as a geometric monodromy of the T 4 fibres of a doubled torus bundle T , in

which auxiliary coordinates are introduced as described in the previous section. We now

turn to this doubled formulation of our example.

3.2 The doubled torus fibration T
As discussed in section 2, a string background which is a torus bundle or T-fold also admits

a description as a doubled torus bundle T . For the current example with T 2 fibres, this

doubled torus bundle with T 4 fibres is constructed by introducing auxiliary coordinates

z̃a = (ỹ, z̃) for the torus T-dual to the physical torus, so that

za = (y, z) → X
A = (y, z, ỹ, z̃)

Then za = (y, z) are coordinates for the physical fibre T 2 ⊂ T 4 and z̃a = (ỹ, z̃) are

coordinates on the T-dual torus T̃ 2 ⊂ T 4.

In this description, all monodromies have a geometric action on the doubled fibres as a

large diffeomorphism since O(2, 2; Z) ⊂ GL(4; Z). The monodromy of the doubled torus fi-

bres is

x → x + 1 X
A →

(
e−N

)A
BX

B

which in the case of the nilfold is given by (2.49) where Kxab and Qx
ab are both zero and

fxz
y = m ∈ Z, so that on taking x → x + 1,




y

z

ỹ

z̃


→




1 m 0 0

0 1 0 0

0 0 1 0

0 0 −m 1







y

z

ỹ

z̃


 (3.15)

The metric g and B-field of the T 2 fibres specify a generalised metric H on the doubled

T 4 fibres of T , a 4 × 4 matrix with components in the y, z, ỹ, z̃ basis given by

H =

(
g − Bg−1B Bg−1

−g−1B g−1

)
(3.16)
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For the nilfold with metric (3.4) and B = 0, the generalised metric on the T 4 fibres of T is

HN =




1 −mx 0 0

−mx 1 + m2x2 0 0

0 0 1 + m2x2 mx

0 0 mx 1




This x-dependent metric H is related to the x-independent metric M appearing in (2.2)

by HAB(x) = (eNx)A
CMCD(eNx)DB where, in this case, MAB = δAB . As for the nilfold,

the doubled torus bundle T can be thought of either as a T 4 bundle over S1
x or as a twisted

torus T = G/Γ, given by identifying a certain group manifold G under the action of a

discrete subgroup Γ. The five-dimensional group G is that generated by (2.32). Using the

same coordinates (x, y, z, ỹ, z̃) as above, the general element g ∈ G is

g(x, y, z, ỹ, z̃) =




1 mx 0 0 y

0 1 0 0 z

0 0 1 0 ỹ

0 0 −mx 1 z̃

0 0 0 0 1




(3.17)

The global structure of T is given by taking the quotient by a discrete subgroup. The

relevant discrete subgroup Γ consists of elements of the form

h =




1 mα 0 0 β

0 1 0 0 γ

0 0 1 0 β̃

0 0 −mα 1 γ̃

0 0 0 0 1




(3.18)

where α, β, γ, β̃ and γ̃ are arbitrary integers. The left action of h is g → h · g and acts on

the coordinates through

x → x + α y → y + mαz + β z → z + γ

ỹ → ỹ + β̃ z̃ → z̃ − mαỹ + γ̃
(3.19)

We identify G under the left action of Γ so that the coordinates are subject to the identi-

fications

(x, y, z, ỹ, z̃) ∼ (x + 1, y + mz, z, ỹ, z̃ − mỹ)

(x, y, z, ỹ, z̃) ∼ (x, y + 1, z, ỹ, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z + 1, ỹ, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z, ỹ + 1, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z, ỹ, z̃ + 1) (3.20)

There is a natural action of GL ×GR on the group manifold G, generated by associated

right- and left-invariant vector fields. The right action GR is generated by the left-invariant
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vector fields (i.e. invariant under GL)

Zx =
∂

∂x
Zy =

∂

∂y
Zz =

∂

∂z
+ mx

∂

∂y

Xy =
∂

∂ỹ
− mx

∂

∂z̃
Xz =

∂

∂z̃
(3.21)

which satisfy the commutation relations

[Zx, Zz] = mZy [Zx,Xy] = mXz (3.22)

where all other commutators vanish. Note that this is not the gauge algebra of the field

theory (2.8) obtained by compactification on the nilfold, but is a subgroup of a contraction

of the gauge algebra (2.32). The fact that the vector field is left-invariant means that it

is invariant under the action of the discrete group Γ and so well-defined on the quotient

T = G/Γ. Indeed, the left-invariant vector fields are dual to the left-invariant one-forms

P x = dx P y = dy − mxdz P z = dz

Qy = dỹ Qz = dz̃ + mxdỹ
(3.23)

which are also well-defined on the quotient G/Γ.

By contrast, the generators of the left action GL

Z̃x =
∂

∂x
+ mz

∂

∂y
− mỹ

∂

∂z̃
Z̃y =

∂

∂y
Z̃z =

∂

∂z

X̃y =
∂

∂ỹ
X̃z =

∂

∂z̃
(3.24)

are globally defined on the group G, but are not invariant under the action of Γ, which acts

as
Z̃x → Z̃x + mγZ̃y − mβ̃X̃z Z̃y → Z̃y Z̃z → Z̃z − mαZ̃y

X̃y → X̃y + mαX̃z X̃z → X̃z
(3.25)

These vector fields are therefore not globally defined on the twisted torus T ≃ G/Γ. The

discrete group Γ does however preserve the subgroup G̃L ≃ R
2 ⊂ GL generated by X̃a =

(X̃y , X̃z)

Γ : G̃L → G̃L

(It also preserves Z̃y.) The subgroup G̃L consists of matrices f of the form (3.17) with

x = y = z = 0,

f(ỹ, z̃) =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 ỹ

0 0 0 1 z̃

0 0 0 0 1




Taking the quotient of the group G by the left action of G̃L gives the coset G/G̃L which

is just the Heisenberg group G, represented by group elements of the form (3.17) with

ỹ = z̃ = 0. The subgroup G̃L has the property that, for all h ∈ Γ and all f ∈ G̃L,

fhf−1 ∈ Γ
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i.e. there is an h′ ∈ Γ so that

hf = fh′

This implies that G̃L has a well-defined action on the coset T = G/Γ so that identifying T
under the action of G̃L is well-defined. This quotient gives the nilfold, N = T /G̃L. It can

also be viewed as the quotient of G by the left action of the subgroup of elements of the

form (3.18) with α, β, γ arbitrary integers and β̃,γ̃ arbitrary real numbers.

3.2.1 Polarisations

We have seen that the data given by the nilfold background specifies a doubled torus bundle

T and that the nilfold geometry can be recovered as the quotient N = T /G̃L. The T-

duals of the nilfold are the T 3 with H-flux and the T-fold, and these can also be recovered

from the same doubled geometry T through different choices of polarisation. Then T is a

universal geometry containing the original space and its T-duals, as discussed in section 2.

Using the notation X
A (A = 1, 2, 3, 4) for the four coordinates of T , each polarisation

selects two of the four coordinates X
A to be the ‘physical’ coordinates za = (y, z) and the

other two to be the ‘auxiliary’ z̃a = (ỹ, z̃). In section 2, polarisations were defined in open,

contractible patches of the base, which here is the circle S1
x. We will consider polarisations

defined on the interval I with 0 < x < 1, so that the polarisation defines a 3-dimensional

subspace, topologically I × T 2, of the doubled space that has topology I × T 4.

A polarisation selects a maximally isotropic choice of T 2 ⊂ T 4 as the physical space,

defined by a constant projector Πa
A so that za = (y, z) = Πa

AX
A are the coordinates of the

physical T 2. The complementary projector Π̃aA defines the auxiliary T 2 with coordinates

z̃a = (ỹ, z̃) = Π̃aAX
A. It is useful to define the polarisation tensor ΘÂ

A so that

ΘÂ
A =

(
Πa

A Π̃aA

)
X

Â = ΘÂ
AX

A =




y

z

ỹ

z̃




The polarisation is constant over I, so that it selects a subspace I ×T 2 of I ×T 4. This

then can be continued in x so that it selects a subspace R×T 2 of R×T 4. We will see that

the various choices of subspace R × T 2 will give the covering spaces CN , CT , CT 3 . The

O(2, 2; Z) transition functions of section 2 are now seen, after the identification x ∼ x + 1,

as an O(2, 2; Z) monodromy round the x circle.

The effect of a T-duality was analysed in [7]. Acting with the O(2, 2; Z) element OA
B

changes the polarisation

ΘÂ
A → Θ′Â

A = ΘÂ
BOB

A

and the new physical coordinates are y′, z′, where

X
′Â = Θ′Â

AX
A =




y′

z′

ỹ′

z̃′
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The generalised metric transforms as

HAB → H′
AB = (Ot)A

CHCDOD
B

and the new metric g′ and B-field B′ of the T 2 fibres can be read off from

H′ =

(
g′ − B′g′−1B′ B′g′−1

−g′−1B′ g′−1

)
(3.26)

We shall now consider how this works in the example of the doubled space T con-

structed above. For the nilfold, the polarisation is

y = Πy
AX

A = X
1 ỹ = Π̃yAX

A = X
3

z = Πz
AX

A = X
2 z̃ = Π̃zAX

A = X
4

(3.27)

and the polarisation tensor is just the identity matrix

ΘÂ
A =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




The polarisation selects the subspace with coordinates x, y, z, and this gives the nilfold on

identifying the x coordinate.

T
3 with H-flux. Acting with the O(2, 2; Z) element

OA
B =




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1




which corresponds to a T-duality in the y direction, the polarisation becomes (dropping

primes)

ΘÂ
A =




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1




The polarisation in the T 4 fibres of T is then

y = Πy
AX

A = X
3 ỹ = Π̃yAX

A = X
1

z = Πz
AX

A = X
2 z̃ = Π̃zAX

A = X
4

(3.28)

Note that, compared with (3.27), the duality interchanges Πy
A and Π̃yA in the passive

perspective or equivalently, X
1 and X

3 in the active perspective. The generalised metric,

in this polarisation, may be written as

HT 3 =




1 + m2x2 0 0 mx

0 1 + m2x2 −mx 0

0 −mx 1 0

mx 0 0 1
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The metric and B-field in the T 2 ⊂ T 4 fibre can then be read off by comparison with (3.26)

and we recover the expected background

gab =

(
1 0

0 1

)
Bab =

(
0 mx

−mx 0

)

The global structure is given by the identifications of the coordinates

(x, y, z, ỹ, z̃) ∼ (x + 1, y, z, ỹ + mz, z̃ − my)

(x, y, z, ỹ, z̃) ∼ (x, y + 1, z, ỹ, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z + 1, ỹ, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z, ỹ + 1, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z, ỹ, z̃ + 1) (3.29)

so that the physical coordinates (x, y, z) are periodic and parameterise a T 3, as expected.

The structure is encoded in the monodromy matrix eN which in this polarisation is given

by (2.9) where fxa
b = Qx

ab = 0 and

Kxab =

(
0 m

−m 0

)
(3.30)

The twist matrix N is upper triangular and the monodromy is just a shift of the B-field,

corresponding to non-trivial H-flux. It is a geometric transformation in ∆(Z) and the

discrete subgroup preserves the polarisation.

In this polarisation, the generators of the left action, GL, are

Z̃x =
∂

∂x
+ mz

∂

∂ỹ
− my

∂

∂z̃
Z̃y =

∂

∂y
Z̃z =

∂

∂z

X̃y =
∂

∂ỹ
X̃z =

∂

∂z̃
(3.31)

These are not preserved by the action of Γ and transform as

Z̃x → Z̃x + mγX̃y − mβX̃z Z̃y → Z̃y + mαX̃z Z̃z → Z̃z − mαX̃y

X̃y → X̃y X̃z → X̃z
(3.32)

We see that Γ preserves the subgroup G̃L ≃ R
2 ⊂ GL generated by (X̃y, X̃z) and the

physical space is therefore be recovered as the quotient T 3 = T /G̃L.

T-fold. We have seen that a T-duality along the y-direction relates the nilfold and the

T 3 with H-flux. If instead we act on the nilfold polarisation with the element of O(2, 2; Z)

OA
B =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0
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which corresponds to T-duality along the z direction, we find the polarisation tensor is now

ΘÂ
A =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




In this polarisation, the coordinates are

y = Πy
AX

A = X
1 ỹ = Π̃yAX

A = X
3

z = Πz
AX

A = X
4 z̃ = Π̃zAX

A = X
2

(3.33)

and the generalised metric on the T 4 fibres is

HT−Fold =




1 0 0 −mx

0 1 mx 0

0 mx 1 + m2x2 0

−mx 0 0 1 + m2x2


 (3.34)

from which the metric and B-field on the physical T 2 fibres may be read off

gab =
1

1 + m2x2

(
1 0

0 1

)
Bab =

mx

1 + m2x2

(
0 1

−1 0

)

The monodromy matrix eN in this polarisation is given by (2.9) where fxa
b = Kxab =

0 and

Qx
ab =

(
0 m

−m 0

)
(3.35)

which is not in the geometric group ∆(Z). The monodromy then includes a T-duality

acting on the physical T 2 fibres and so the global structure, which is determined by Γ,

requires the following identifications of the coordinates

(x, y, z, ỹ, z̃) ∼ (x + 1, y + mz̃, z − mỹ, ỹ, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y + 1, z, ỹ, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z + 1, ỹ, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z, ỹ + 1, z̃)

(x, y, z, ỹ, z̃) ∼ (x, y, z, ỹ, z̃ + 1) (3.36)

Here it is clear from the identifications

x ∼ x + 1 y ∼ y + mz̃ z ∼ z − mỹ

that one cannot distinguish globally between the coordinates (y, z) on T 2 and the coordi-

nates (ỹ, z̃) on the dual torus T̃ 2, as they get mixed by the monodromy.
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The generators of the left action, GL, are

Z̃x =
∂

∂x
+ mz̃

∂

∂y
− mỹ

∂

∂z
Z̃y =

∂

∂y
Z̃z =

∂

∂z

X̃y =
∂

∂ỹ
X̃z =

∂

∂z̃
(3.37)

These are not invariant under Γ, but transform as

Z̃x → Z̃x + mγ̃Z̃y − mβ̃Z̃z Z̃y → Z̃y Z̃z → Z̃z

X̃y → X̃y + mαZ̃z X̃z → X̃z − mαZ̃y

We see that Γ does not preserve the subgroup G̃L ≃ R
2 ⊂ GL generated by (X̃y, X̃z).

The metric and B-field (3.14) on I × T 4 can be extended to R × T 4 by continuing in

x. This gives a covering space C of T in which the first identification in (3.36) is dropped.

It is obtained by identifying G under ΓC where ΓC is the subgroup of Γ with α = 0. The

subgroup G̃L ≃ R
2 ⊂ GL generated by (X̃y, X̃z) is preserved by ΓC , so that the coset C/G̃L

is well-defined, and gives the covering space CT of the T-fold considered previously.

Finally, consider the identification x ∼ x + 1, so that the fibres at x = 0 and x = 1

are glued together with an O(2, 2; Z) transformation. For the doubled space I × T 4, the

O(2, 2; Z) gluing is a diffeomorphism of the T 4, giving a T 4 bundle over S1, which is precisely

T with the coordinate identification given in (3.36). For I × T 2, the O(2, 2; Z) gluing is a

T-duality giving a T-fold. The local structure of the T-fold is that of the coset C/G̃L.

3.3 The doubled twisted torus X
The doubled torus geometry T gives a geometric interpretation to the action of the twist

matrix NA
B but does not give a geometric interpretation for the full gauge algebra (3.10).

In the nilfold polarisation, the natural left-invariant vector fields (3.21) on T satisfy the al-

gebra

[Zx, Zz] = mZy [Zx,Xy] = mXz

where all other commutators vanish. This algebra is a subgroup of a contraction of the full

gauge algebra of the theory (2.6), which is

[Zx, Zz] = mZy [Zx,Xy] = mXz [Zz,X
y ] = −mXx (3.38)

where all other commutators vanish. This highlights the fact that the doubled torus for-

mulation does not encode all of the information of the field theory (2.6) in its geometry.

This is not surprising since, as discussed in [22] and reviewed in section 2, the generator

Xx of B-shifts with one leg along S1
x does not have a geometric interpretation in the T

construction. It can be geometrised by introducing an auxiliary coordinate for the base

coordinate x so that (x, XA) → (x, x̃, XA). Indeed, it is natural to introduce a variable

x̃ conjugate to winding modes on the x circle. The natural doubled geometry, encoding

the full gauge group, is given by the six-dimensional noncompact group manifold G with

Lie algebra (3.38) and then taking the quotient by some discrete subgroup Γ to obtain a

compact six-dimensional doubled twisted torus X = G/Γ.
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The six-dimensional doubled group is G = G ⋉ R
3 where G is the three-dimensional

Heisenberg group, so that G is the cotangent bundle G = T ∗G of the Heisenberg group. A

matrix representation for the Lie algebra (3.38) can be given in terms of the tm (3.5) as

Tx =

(
tx 0

0 tx

)
Ty =

(
ty 0

0 ty

)
Tz =

(
tz 0

0 tz

)

T x =

(
0 0

ty 0

)
T y =

(
0 −tz

−tx 0

)
T z =

(
0 ty
0 0

)

and so a general element of the doubled group may be written as

g =




1 mx y 0 0 z̃

0 1 z 0 0 −ỹ

0 0 1 0 0 0

0 −mỹ x̃ − mzỹ 1 mx y + 1
2mỹ2

0 0 0 0 1 z

0 0 0 0 0 1




(3.39)

showing the dependence on the coordinates (x, y, z, x̃, ỹ, z̃).

Taking the quotient of G by the action of Xx eliminates x̃ and gives the five-dimensional

group manifold used in the doubled torus construction considered in the previous subsec-

tion. The choice of discrete cocompact subgroup Γ of the six-dimensional group G is largely

dictated by requiring that it be compatible with the five-dimensional quotient used in the

doubled torus construction. The global structure of the twisted torus G/Γ is then given by

the identification g ∼ h · g, where a generic element h ∈ Γ is given by

h =




1 mα β 0 0 β̃

0 1 γ 0 0 −γ̃

0 0 1 0 0 0

0 −mβ̃ α̃ − mβγ̃ 1 mα β + 1
2mβ̃2

0 0 0 0 1 γ

0 0 0 0 0 1




where (α, β, γ, α̃, β̃, γ̃) are arbitrary integers. The left action of h is g → h · g and acts on

the coordinates through

x → x + α y → y + mαz + β z → z + γ

x̃ → x̃ + mγỹ + α̃ ỹ → ỹ + β̃ z̃ → z̃ − mαỹ + γ̃ (3.40)

Identifying G under the action of Γ implies that the coordinates are subject to the identi-

fications

(x, y, z, x̃, ỹ, z̃) ∼ (x + 1, y + mz, z, x̃, ỹ, z̃ − mỹ)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y + 1, z, x̃, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z + 1, x̃ + mỹ, ỹ, z̃)
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(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃ + 1, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃, ỹ + 1, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃, ỹ, z̃ + 1) (3.41)

The doubled group G has a natural action of GL × GR which is generated by right-

and left-invariant vector fields. The right action GR is generated by the left-invariant

vector fields

Zx =
∂

∂x
Zy =

∂

∂y
Zz =

∂

∂z
+ mx

∂

∂y

Xx =
∂

∂x̃
Xy =

∂

∂ỹ
+ mz

∂

∂x̃
− mx

∂

∂z̃
Xz =

∂

∂z̃
(3.42)

which satisfy the commutation relations of the full gauge algebra of the supergravity (3.38).

Since the cocompact subgroup Γ acts from the left, the left-invariant (Zm,Xm) are globally

defined on X . The left-invariant one-forms (Pm, Qm), dual to the vector fields (Zm,Xm),

are
P x = dx P y = dy − mxdz P z = dz

Qx = dx̃ − mzdỹ Qy = dỹ Qz = dz̃ + mxdỹ
(3.43)

These one-forms generalise those of the nilfold (3.2) and the doubled torus (3.23). The

generators of the left action, GL, are

Z̃x =
∂

∂x
+ mz

∂

∂y
− mỹ

∂

∂z̃
Z̃y =

∂

∂y
Z̃z =

∂

∂z
+ mỹ

∂

∂x̃

X̃x =
∂

∂x̃
X̃y =

∂

∂ỹ
X̃z =

∂

∂z̃
(3.44)

These are not invariant under Γ and transform as

Z̃x→ Z̃x+mγZ̃y−mβ̃X̃z Z̃y → Z̃y Z̃z → Z̃z−mαZ̃y+mβ̃X̃x

X̃x→X̃x X̃y →X̃y+mαX̃z−mγX̃x X̃z →X̃z
(3.45)

We see that the X̃m close to generate an abelian sub-group G̃L ≃ R
3 ⊂ GL. Since Γ

preserves G̃L, the nilfold geometry is in fact recovered globally as the quotient

N ≃ X/G̃L

To see this, the group element (3.39) can be decomposed as

g = g̃ · k

where g̃ ∈ G̃L and the coset representative k

k =

(
g′ 0

0 g′

)
∈ G/G̃f

where g′ is an element of the Heisenberg group G as given by (3.6). Since Γ preserves G̃L

we can recover the global structure of the nilfold by the action of Γ on (x, y, z).
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3.3.1 Polarisations

Following section 2, it is useful to introduce a polarisation of the Lie algebra, with a

projector Π̃mM projecting the generators TM onto Zm, associated with an action on the

coordinates x, y, z, and the complementary projector Πm
M onto the Xm. These combine

into a polarisation tensor

ΘM̂
M =

(
Πm

M

Π̃mM

)

so that

T M̂ = ΘM̂
MTM =




Xx

Xy

Xz

Zx

Zy

Zz




The left-invariant forms PM on G are similarly projected onto Pm and Qm,

PM̂ = ΘM̂
MPM =

(
Pm

Qm

)

Similarly, the same projectors split the right-invariant T̃M into Z̃m and X̃m. As in section 2,

if the X̃m generate a closed algebra then they constitute an integrable distribution and

define a submanifold, at least locally.

We can also define a polarisation of the coordinates. Let the coordinates of X be X
I ,

I = 1, 2, .., 6. A polarisation xi = (x, y, z) = Πi
IX

I then locally selects which three of the

six X
I are to be treated as the physical coordinates (x, y, z), and which three are to be

treated as auxiliary, x̃i = (x̃, ỹ, z̃) = Π̃iIX
I . As we shall see, for a geometric background

or for one that is locally geometric (e.g. a T-fold) the background configuration is given

in terms of fields that depend on (x, y, z) but not (x̃, ỹ, z̃). It is useful to introduce a

polarisation tensor for the coordinates

ΘÎ
I =

(
Πi

I

Π̃iI

)
X

Î = ΘÎ
IX

I =




x

y

z

x̃

ỹ

z̃




The different polarisations we shall consider will just correspond to a relabeling of the

coordinates, choosing different subsets of three of the six coordinates to be physical.

Nilfold. The nilfold is recovered by the polarisation choice

x = Πx
IX

I = X
1 y = Πy

IX
I = X

2 z = Πz
IX

I = X
3 (3.46)

x̃ = Π̃xIX
I = X

4 ỹ = Π̃yIX
I = X

5 z̃ = Π̃zIX
I = X

6 (3.47)
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which corresponds to the polarisation tensor

Θ =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




This selects the submanifold with coordinates x, y, z, which is of course the nilfold. The

doubled twisted torus is the cotangent bundle for the Heisenberg group, G = T ∗G = G⋉R
3,

modded out by Γ. The polarisation projection Π can then be identified as the natural

bundle projection of the cotangent bundle to the base Π : T ∗G → G. As in the doubled

torus construction, we can recover the dual formulation as a T 3 with H-flux or as a T-fold

as different polarisations of the same doubled background.

As before, acting with a linear transformation O changes the polarisation

Θ → Θ′ = ΘO

and any two polarisations are related in this way. This changes the polarisation of the

Lie algebra in the way described above, and we shall accompany this with the relabeling

of the coordinates associated with the change of coordinate polarisation, using the same

linear transformation O. If O ∈ O(2, 2; Z), the T-duality group acting on the coordinates

y, z, ỹ, z̃, then the two polarisations give two backgrounds related by a T-duality, as we

shall review below, and these give two physically equivalent string backgrounds. However,

other polarisations seem possible, with O not in O(2, 2; Z), and the question arises as to

whether they give physically equivalent backgrounds. In [10], it was conjectured that there

are generalised T-dualities acting in precisely this way, and we will see below that the

doubled twisted torus formalism suggests a natural form for these.

The one-forms in this polarisation are

P x = dx P y = dy − mxdz P z = dz

Qx = dx̃ − mzdỹ Qy = dỹ Qz = dz̃ + mxdỹ

Here, the left-invariant one-forms on the Heisenberg group G and on G̃ = R
3 are Pm and

dx̃m respectively. This case is a special example of the twisted torus case considered in

section 2. Note that we can work in terms of the derivatives of the coordinates dxi, instead

of the frame forms Pm and obtain the coordinate metric directly.

The algebra (3.38) is a Drinfel’d double and we can follow the general procedure

outlined in section 2.6 to recover a conventional description of the background. The natural

GR- and G̃L-invariant forms in this polarisation are

rx = dx ry = dy − mzdx rz = dz

ℓ̃x = dx̃ ℓ̃y = dỹ ℓ̃z = dz̃
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(Note that P y 6= ry.) The GL-invariant one-form PM̂ , in the nilfold polarisation, may be

written as PM̂ = ΦN̂VN̂
M̂ (x), where ΦM̂ = (rm, ℓ̃m) and

VM̂
N̂ =

(
Am

n 0

0 (A−1)mn

)

The adjoint action of the Heisenberg group on itself, which appears in V, is given by

Am
n =




1 mz 0

0 1 0

0 −mx 1




The construction of section 2.6 gives the G̃L-invariant metric

ds2 = δmnAm
pA

n
qr

p ⊗ rq = gijdxi ⊗ dxj

where

gij =




1 0 0

0 1 −mx

0 −mx 1 + m2x2




and the contribution from the generalised metric HMN (x) to the B-field is zero. In fact,

by substituting

1

2
d
(
rm ∧ ℓ̃m

)
= −1

2
mdx ∧ dỹ ∧ dz K = −mdx ∧ dỹ ∧ dz

into (2.63), we see that H = 0 in this polarisation. The 3-dimensional nilfold geometry is

thus recovered.

T
3 with H-flux. We now consider acting with O ∈ O(2, 2; Z) to change the polarisation

to that corresponding to the T 3 with constant H-flux. The element O and polarisation

tensor are given by

O = Θ =




1 0 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1




As in the doubled torus bundle T , the action of a T-duality along the y-direction has the

effect of exchanging

Zy ↔ Xy y ↔ ỹ P y ↔ Qy

relative to the nilfold polarisation. The gauge algebra of the resulting supergravity is, by

construction, identical to that from the nilfold. However, we now label the generators

acting geometrically on the T 3 as Zm (Zx is the U(1) acting on the x-circle etc) and the

ones from B-field transformations as Xm, so that the algebra is now

[Zx, Zz] = mXy [Zx, Zy] = mXz [Zz, Zy] = −mXx

– 43 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
4

where all other commutators vanish. This is of course the same algebra as in (3.38), after

relabeling the generators.

This Lie algebra fixes the local structure of the doubled twisted torus and it is partic-

ularly useful to consider the left-invariant one-forms on X , which may be written as

P x = dx P y = dy P z = dz

Qx = dx̃ − mzdy Qy = dỹ − mxdz Qz = dz̃ + mxdy
(3.48)

The one-forms Pm tell us that the spacetime is locally R
3. The action of Γ on the coordi-

nates is
x → x + α y → y + β z → z + γ

x̃ → x̃ + mγy + α̃ ỹ → ỹ + mαz + β̃ z̃ → z̃ − mαy + γ̃
(3.49)

The identification g ∼ h · g imposes the following identifications on the coordinates

(x, y, z, x̃, ỹ, z̃) ∼ (x + 1, y, z, x̃, ỹ + mz, z̃ − my)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y + 1, z, x̃, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z + 1, x̃ + my, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃ + 1, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃, ỹ + 1, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃, ỹ, z̃ + 1) (3.50)

We see from the identifications of the spacetime coordinates (x, y, z) that the spacetime

globally is a T 3.

The generators of the left action, GL, are

Z̃x =
∂

∂x
+ mz

∂

∂ỹ
− my

∂

∂z̃
Z̃y =

∂

∂y
Z̃z =

∂

∂z
+ my

∂

∂x̃

X̃x =
∂

∂x̃
X̃y =

∂

∂ỹ
X̃z =

∂

∂z̃

(3.51)

These are not invariant under the action of Γ and transform as

Z̃x → Z̃x + mγX̃y − mβX̃z X̃x → X̃x

Z̃y → Z̃y + mαX̃z − mγX̃x X̃y → X̃y

Z̃z → Z̃z − mαX̃y + mβX̃x X̃z → X̃z

The X̃m generate an abelian group G̃L ≃ R
3 ⊂ GL. We see that Γ preserves G̃L and we

can recover the spacetime as the quotient T 3 ≃ X/G̃L.

We now recover the conventional background from the doubled geometry following

section 2.6. As discussed in section 2.6, we use the parameterisation in which an element

of G is written as h = g̃k. Using the generators

Tx =

(
tx 0

0 tx

)
Ty =

(
0 −tz

−tx 0

)
Tz =

(
tz 0

0 tz

)

T x =

(
0 0

ty 0

)
T y =

(
ty 0

0 ty

)
T z =

(
0 ty
0 0

)
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where the matrices tm are given in (3.5) and writing a general element of G as

h = g̃k = exp(x̃mT̃m) exp(xmTm)

we find that

h =




1 mx ỹ 0 0 z̃

0 1 z 0 0 −y

0 0 1 0 0 0

0 −my x̃ 1 mx ỹ + 1
2my2

0 0 0 0 1 z

0 0 0 0 0 1




Then the left-invariant forms Pm and Qm in this parameterisation are

P x = dx P y = dy P z = dz

Qx = dx̃ + mydz Qy = dỹ − mxdz Qz = dz̃ + mxdy
(3.52)

It is useful to have k and g̃ explicitly

k =




1 mx 0 0 0 0

0 1 z 0 0 −y

0 0 1 0 0 0

0 −my 0 1 mx 1
2my2

0 0 0 0 1 z

0 0 0 0 0 1




g̃ =




1 0 ỹ 0 0 z̃

0 1 0 0 0 0

0 0 1 0 0 0

0 0 x̃ 1 0 ỹ

0 0 0 0 1 0

0 0 0 0 0 1




so that we can determine g̃−1dg̃ = ℓ̃ = ℓ̃mT̃m and dkk−1 = r = rmTm + rmT̃m explicitly

rx = dx ry = dy rz = dz

rx = mzdy ry = −mxdz rz = mxdy

ℓ̃x = dx̃ ℓ̃y = dỹ ℓ̃z = dz̃

(3.53)

We note that

Qx = q̃x + mydz − mzdy Qy = q̃y + mzdx − mxdz Qz = q̃z + mxdy − mydx

where Qm is given in (3.52) and q̃m = ℓ̃m + rm. We write the left-invariant one-form on G
as PM̂ = ΦN̂VN̂

M̂ , where ΦM̂ = (rm, q̃m) and

VN̂
M̂ =

(
δm

n bmn

0 δm
n

)

where

bmn =




0 mz −my

−mz 0 mx

my −mx 0
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The metric for this background is flat

ds2 = δmndxm ⊗ dxn

and from the identifications (3.50) we see that globally the compact space is T 3. We now

consider the H-field. The antisymmetric matrix bmn in VN̂
M̂ defines a two-form

b = mzdx ∧ dy + mydz ∧ dx + mxdy ∧ dz

so that

db = 3mdx ∧ dy ∧ dz

It is not hard to show that

1

2
d (rm ∧ q̃m) = −3

2
mdx ∧ dy ∧ dz K = −mdx ∧ dy ∧ dz

so that the physical H-field given by (2.64) is

H = mdx ∧ dy ∧ dz

and we recover the T 3 with constant H-flux background as expected.

T-fold. We now consider acting on the nilfold polarisation with a different O ∈ O(2, 2; Z)

to change the polarisation to that of the T-fold. The element O and polarisation tensor

are given by

O = Θ =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0




Acting with this O, which corresponds to performing a T-duality along the z-direction, has

the effect of exchanging

Zz ↔ Xz z ↔ z̃ P z ↔ Qz

relative to the nilfold polarisation. The gauge algebra of the corresponding field theory

(2.6) is

[Zx,Xz] = mZy [Zx,Xy] = mZz [Xz ,Xy] = −mXx

where all other commutators vanish. The left-invariant one-forms corresponding to this

algebra are
P x = dx P y = dy − mxdz̃ P z = dz + mxdỹ

Qx = dx̃ − mz̃dỹ Qy = dỹ Qz = dz̃
(3.54)

The global structure Γ of the doubled twisted torus X is determined by the rigid left action

on the coordinates

x → x + α y → y + mαz̃ + β z → z − mαỹ + γ

x̃ → x̃ + mγ̃ỹ + α̃ ỹ → ỹ + β̃ z̃ → z̃ + γ̃
(3.55)
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and we can identify G under the action of Γ so that the coordinates on X are subject to

the identifications

(x, y, z, x̃, ỹ, z̃) ∼ (x + 1, y + mz̃, z − mỹ, x̃, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y + 1, z, x̃, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z + 1, x̃, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃ + 1, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃, ỹ + 1, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃ + mỹ, ỹ, z̃ + 1) (3.56)

We see that, under the identification, the physical coordinates (y, z) mix with the auxiliary

coordinates (ỹ, z̃) so that, whilst the polarisation of PM into one-forms corresponding to

differing maximally isotropic subgroups of G is globally defined, the polarisation of the

coordinates X
I is not and so the distinction between spacetime coordinates xi = (x, y, z)

and auxiliary coordinates x̃i = (x̃, ỹ, z̃) can not be made globally. The generators of the

left action GL, in this polarisation, are

Z̃x =
∂

∂x
+ mz̃

∂

∂y
− mỹ

∂

∂z
Z̃y =

∂

∂y
Z̃z =

∂

∂z

X̃x =
∂

∂x̃
X̃y =

∂

∂ỹ
X̃z =

∂

∂z̃
+ mỹ

∂

∂x̃
(3.57)

These are not invariant under Γ and transform as

Z̃x → Z̃x + mγ̃Z̃y − mβ̃Z̃z X̃x → X̃x

Z̃y → Z̃y X̃y → X̃y + mαZ̃z − mγ̃X̃x

Z̃z → Z̃z X̃z → X̃z − mαZ̃y + mβ̃X̃x

The X̃m generate the Heisenberg group G̃L ⊂ GL. We can identify the cover of the T-fold

as the coset CT ≃ G/G̃L, but since Γ does not preserve G̃L, the quotient X/G̃L is not well-

defined in a conventional sense. Instead, a patch of the spacetime is recovered as a patch of

the coset G/G̃L. As remarked above, there is no global spacetime description of the T-fold

and we must glue these local spacetime descriptions together with the identifications (3.56).

The action of G̃L on the coordinates is

x → x y → y z → z

x̃ → x̃ + mγ̃ỹ + α̃ ỹ → ỹ + β z̃ → z̃ + γ̃

The natural left-invariant one-forms on G̃ (the three-dimensional Heisenberg group) are

ℓ̃x = Qx ℓ̃y = Qy ℓ̃z = Qz

Since the group G = R
3 is abelian, the right- and left-invariant forms on G coincide

rm = ℓm = dxm. The GL-invariant one-forms may then be written, as in section 2.6, as

PM̂ = ΦN̂VN̂
M̂ where ΦM̂ = (dxm, ℓ̃m) and

VM̂
N̂ =

(
δm

n 0

βmn δm
n

)
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where

βmn =




0 0 0

0 0 mx

0 −mx 0




The G̃L-invariant metric is then

HM̂N̂ =




1 0 0 0 0 0

0 1 0 0 0 −mx

0 0 1 0 mx 0

0 0 0 1 0 0

0 0 mx 0 1 + (mx)2 0

0 −mx 0 0 0 1 + (mx)2




from which we read off

gij =
1

1 + (mx)2




1 + (mx)2 0 0

0 1 0

0 0 1


 bij =

mx

1 + (mx)2




0 0 0

0 0 −1

0 1 0


 (3.58)

Using
1

2
d
(
rm ∧ ℓ̃m

)
= −1

2
mdx ∧ dỹ ∧ dz̃ K = −mdx ∧ dỹ ∧ dz̃

in the expression (2.63), we find that the H-field strength is simply given by H = db with

b given in (3.58).

3.3.2 R-flux

The doubled twisted torus construction allows us to consider acting with an element O of

O(3, 3; Z) to give a new polarisation Θ

O = Θ =




0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




This change of polarisation exchanges

Zx ↔ Xx x ↔ x̃ P x ↔ Qx (3.59)

relative to the T-fold polarisation above. The left-invariant one-forms on X are

P x = dx − mz̃dỹ P y = dy − mx̃dz̃ P z = dz + mx̃dỹ

Qx = dx̃ Qy = dỹ Qz = dz̃
(3.60)
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which describes the local structure of the doubled twisted torus. The global structure of

X is determined by the rigid left action of the cocompact group Γ ⊂ GL, which acts on the

coordinates as

x → x + mγ̃ỹ + α y → y + mα̃z̃ + β z → z − mα̃ỹ + γ

x̃ → x̃ + α̃ ỹ → ỹ + β̃ z̃ → z̃ + γ̃
(3.61)

Identification of G under Γ requires that the coordinates are subject to the identifications

(x, y, z, x̃, ỹ, z̃) ∼ (x + 1, y, z, x̃, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y + 1, z, x̃, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z + 1, x̃, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y + mz̃, z − mỹ, x̃ + 1, ỹ, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x, y, z, x̃, ỹ + 1, z̃)

(x, y, z, x̃, ỹ, z̃) ∼ (x + mỹ, y, z, x̃, ỹ, z̃ + 1) (3.62)

The left-acting group GL is generated by

Z̃x =
∂

∂x
Z̃y =

∂

∂y
Z̃z =

∂

∂z

X̃x =
∂

∂x̃
+ mz̃

∂

∂y
− mỹ

∂

∂z
X̃y =

∂

∂ỹ
X̃z =

∂

∂z̃
+ mỹ

∂

∂x
(3.63)

which satisfy the commutation relation

[X̃x, X̃z ] = −mZ̃y [X̃x, X̃y] = −mZ̃z [X̃z, X̃y ] = mZ̃x

where all other commutators vanish. The X̃ ’s do not close to form a sub-algebra and so

there is no subgroup G̃L ⊂ GL, generated by X̃m, with which we can form a quotient

G/G̃L or X/G̃L. In contrast to the previous polarisations, there is no way to recover a

conventional description of spacetime, even locally. This may be seen in the action of G̃L

on the coordinates

x → x + mγ̃ỹ y → y + mα̃z̃ z → z − mα̃ỹ

x̃ → x̃ + α̃ ỹ → ỹ + β̃ z̃ → z̃ + γ̃

where we see that G̃L acts on all of the coordinates, not just those we identify as auxiliary

coordinates. As described in section 2.6, it is still possible to write the left-invariant one-

forms in the form PM̂ = ΦN̂VN̂
M̂ , where VN̂

M̂ is independent of the x̃i and may be used

to define a G̃L-invariant metric HM̂N̂ ; however, this does not give rise to a x̃i-independent

metric and H-field strength.

We wish to interpret the coordinates x, y, z as spacetime coordinates and x̃, ỹ, z̃ as

dual coordinates conjugate to winding numbers. The background fields, in this polarisa-

tion, depend explicitly on the dual coordinate x̃ and so the background is not a conventional

geometry on the three-dimensional space with coordinates x, y, z, and can not be under-

stood as a conventional spacetime, even locally. However, a dependence of the background
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fields on the auxiliary coordinates is quite natural in the doubled twisted torus description,

and might be expected for general string solutions.

This example with R-flux arose from the replacement (3.59) of x with x̃ in the T-

fold generalised metric (3.34), so that it may be viewed as a T 2 fibration over the dual

coordinate x̃ ∼ X
1 [10]. On doubling the fibres, the T-fold is represented by a T 4 bundle

T over the x-circle, while the dual space is a 5-dimensional space T̃ which is a T 4 fibration

over the dual circle S̃1

T 4 →֒ T̃
↓
S̃1

The coordinates x and x̃ appear together in the fully doubled six-dimensional geometry X
and X provides a universal description including both T and T̃ .

In general, the metric and flux, H and K on X , might depend on the dual coordinates

x̃i as well as the spacetime coordinates xi. When Rxab = 0, and a description of the physics

is locally possible in terms of a conventional spacetime, we do not expect the metric and

H-field strength on the physical background to depend explicitly on the auxiliary coor-

dinates. The fact that the physical background fields are invariant under the action of a

group G̃L when Rxab = 0 allows for the x̃i-dependence in HIJ and K to be consistently

removed and the x̃i-independent metric and H-field strength on the physical spacetime to

be recovered for a given polarisation as discussed in section 2.6. In general, both the gen-

eralised metric HIJ and the generalised flux K will contribute to the physical background

and the fields gij(x) and H(x) emerge as a G̃L-invariant combination of the components

of HIJ(X) and K(X).

For R-flux examples such as that considered here, the generators Xm do not form a

closed subalgebra so that there is no invariance of the physical background fields under

a subgroup that can be used to recover a conventional metric and H-field strength, in

keeping with the conclusion that such cases do not admit a conventional description as a

three-dimensional Riemannian geometry, even locally.

4 Sigma model for the doubled torus fibration

Here, and in the following sections, we shall be interested in studying the doubled torus

bundle T and the doubled twisted torus X as target spaces for two-dimensional sigma

models. Doubling some or all of the target space dimensions leads to extra degrees of

freedom, but a constraint reduces the degrees of freedom again to give the right content

of the theory. Of particular interest, will be the recovery of a conventional world-sheet

description of the sigma-model with target the (undoubled) spacetime. We will examine

in detail the recovery of the sigma-models for the nilfold, T-fold, and the T 3 with constant

H-flux backgrounds from these doubled descriptions. In the next section, we shall see

how these backgrounds are recovered from the doubled sigma model introduced in [7] by

an appropriate choice of polarisation of the five-dimensional doubled torus bundle T . In
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section 6 this construction will be generalised and we shall introduce a sigma model which

describes the embedding of Σ into the six-dimensional doubled twisted torus X . This

new sigma model allows for a description of compactifications with R-flux, for which no

conventional spacetime description exists.

In this section, the sigma model for the doubled torus fibration is reviewed. We shall

assume that the doubled torus fibres are 2d-dimensional, for general d, and only restrict to

the case d = 2 in the next section where the nilfold, T-fold and T 3 with constant H-flux

examples are considered explicitly.

4.1 Non-linear sigma model for a conventional torus bundle

Before proceeding to the doubled cases, we first review the conventional sigma model with

world-sheet, Σ and a (d + k)-dimensional target space N which is a d-dimensional torus

fibration over a k-dimensional base manifold M .

T d →֒ N
↓
M

We introduce local coordinates xu on the base M (u, v = 1, 2, . . . k ) and periodic coordi-

nates za on the torus fibres (a, b = k + 1, k + 2, . . . , k + d). The metric gab on the T d fibre

is taken to be independent of the fibre coordinates za but in general depends on the base

coordinates xu. It is convenient to write the metric on N as

Gij =

(
guv + gabA

a
uAb

v gacA
c
v

gbcA
c
u gab

)
(4.1)

where the one-forms Aa = Aa
udxu are the U(1)d connections of the T d fibration and guv

is a metric on M .

The sigma model is given by the action

SN =
1

2

∮

Σ
guvdxu ∧ ∗dxv +

1

2

∮

Σ
gab(dza + Aa) ∧ ∗(dzb + Ab) (4.2)

where Aa = Aa
u∂αxudσα now denotes the pull-back of the connection one-form to the

world-sheet Σ and σα = (τ, σ) are coordinates on the world-sheet. The exterior derivative

is pulled back to the world-sheet, so that d = dσα∂α, and we take the world-sheet metric

to be Lorentzian so that ∗2 = 1. It is useful to write this action as

SN =
1

2

∮

Σ
Guvdxu ∧ ∗dxv +

1

2

∮

Σ
gabdza ∧ ∗dzb +

∮

Σ
dza ∧ ∗Ja (4.3)

where Guv = guv + gabA
a
uAb

v and Ja = gabA
b
udxu.

Here, we shall be particularly interested in the case where the base M is a circle S1
x with

coordinate x ∼ x + 1 as considered in section 2. The monodromy of the fibration is (ef )ab

where, in order for the geometry to be smooth, we require that this monodromy is an ele-

ment of SL(d; Z) - the mapping class group of the T d fibres. The (d+1)-dimensional target
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space is then N = G/Γ, as described in section 2.1. The effect of this SL(d; Z)-twist can be

captured in the sigma model (4.3) by introducing the GL-invariant world-sheet one-forms

P a = (efx)abdσα∂αzb P x = dσα∂αx

The forms Pm = (P x, P a) are pull-backs of the one-forms (2.16) and satisfy the Maurer-

Cartan equations

dP x = 0 dP a − fa
bP

x ∧ P b = 0

where d = dσα∂α is a world-sheet derivative. The metric gab is given in terms of a constant

metric hab on T d by gab(x) = (efx)a
chcd(e

fx)db. The sigma model action is then

SN =
1

2

∮

Σ
GP x ∧ ∗P x +

1

2

∮

Σ
habP

a ∧ ∗P b +

∮

Σ
P a ∧ ∗Ja (4.4)

where G = 1+habA
a
xAb

x and Ja = habA
a. Note that G and Aa

x here are both independent

of the base coordinate and the only explicit x-dependence is contained in P a. The left ac-

tion of G is a rigid symmetry of the sigma model. If the background has an H-flux then we

there is also a Wess-Zumino term. We now consider how the physics of this sigma model,

and those for more general monodromies, can be described in the doubled torus formalism.

4.2 Sigma model for the doubled torus bundle

As discussed in section 2, the T d fibration with B-field over M defines a T 2d fibration over

the base M . The metric gab and B-field Bab of the T d fibres specifies a generalised, xu-

dependent, metric HAB on the T 2d fibres of a doubled torus fibration over M . In addition,

the connection one-form of the T d fibration Aa = Aa
udxu and the B-field components

Ba = Baudxu determine a connection AA = AA
udxu for the doubled torus fibration with

field strength FA = dAA. The sigma model for the doubled torus fibration is the analogue

of (4.3) for the conventional geometry where instead of the (d + k) × (d + k) metric Gij

given in (3.6) we have the (2d + k) × (2d + k) metric

G =

(
guv + 1

2HCDAC
uAD

v
1
2HACAC

v
1
2HBCAC

u
1
2HAB

)

The sigma model contains, in addition to a term SG given by integrating the world-sheet

metric induced by G over Σ, a Wess-Zumino term

Swz = −1

2

∫

V
LABdX

A ∧ FB = −1

2

∮

Σ
LABdX

A ∧ AB

where V is a three-dimensional extension of the world-sheet such that ∂V = Σ and LAB is

the invariant of O(d, d). It is also necessary to include a topological term [8]

SΩ =
1

4

∮

Σ
ΩABdX

A ∧ dX
B

where

Ω =

(
0 −1d

1d 0

)

– 52 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
4

The topological SΩ term does not contribute to the equations of motion but it does play

an important role in the quantum theory [8]. There may also be terms in the world-sheet

action corresponding to other target space dimensions and the target space fields in general

may depend on the corresponding coordinates. Such terms and dependencies will play no

role in our analysis and will be suppressed here, although these terms are important in

constructing conformally-invariant backgrounds.

The action, S = SG + Swz + SΩ, for the sigma model on T is [8]

ST =
1

2

∮

Σ
Guvdxu ∧ ∗dxv +

1

4

∮

Σ
HABdX

A ∧ ∗dX
B − 1

2

∮

Σ
dX

A ∧ ∗JA

+
1

4

∮

Σ
ΩABdX

A ∧ dX
B (4.5)

where

JA = HABAB − LAB ∗ AB (4.6)

The correct number of physical degrees of freedom is ensured by the imposition of the

self-duality constraint [7]

dX
A = LAB

(
HBC ∗ dX

C + ∗JB

)
(4.7)

where HAB and JA may depend on the base coordinate xu. This constraint is consistent

with the equations of motion of the sigma model (4.5). The constraint can be thought of

as imposing that half of the X
A are right-moving and half left-moving, with the split into

these two sectors varying over the base.

When the base M is a circle S1
x, with coordinate x ∼ x + 1, then the doubled torus

bundle is the odd-dimensional twisted torus T ≃ G/Γ discussed in section 2.3. On Σ one

can then define the GL-invariant one-forms

P x = dσα∂αx PA = (eNx)ABdσα∂αX
B (4.8)

which are the pull-backs of the GL-invariant target space one-forms (2.23) to the world-

sheet. These one-forms satisfy the pull-backs of the Maurer-Cartan equations

dP x = 0 dPA − NA
BP x ∧ PB = 0

where, in contrast to (2.23), the exterior derivative here is that of the world-sheet d =

dσα∂α. The x-dependent doubled metric HAB can be written in terms of the x-independent

doubled metric MAB appearing in the Lagrangian (2.2) as

HAB(x) = (eNx)A
CMCD(eNx)DB

The sigma model describing the embedding of Σ into T may then be written as

ST =
1

2

∮

Σ
GP x ∧ ∗P x +

1

4

∮

Σ
MABPA ∧ ∗PB +

1

2

∮

Σ
LABPA ∧ ∗JA

+
1

4

∮

Σ
ΩABdX

A ∧ dX
B (4.9)
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where G = 1 + 1
2MABAA

xAB
x. Written in this way, the rigid invariance of the sigma

model action under GL is manifest (note that the variation of the topological term under

GL gives a total derivative). We shall see that the invariance of the action under subgroups

G̃L ⊂ GL plays a crucial role in imposing the self-duality constraint (4.7) in the quan-

tum theory. Indeed, the self-duality constraint (4.7) may also be written in a manifestly

GL-covariant form [8]

(PA + AA) = LABMBC ∗ (PC + AC) (4.10)

4.3 Polarisations and constraints

One may think of the sigma model (4.5) as a universal sigma model from which different

dual sigma models on (d+ k)-dimensional target spaces, all described as T d fibrations over

M , can be recovered. A conventional sigma model is recovered by specifying a choice of

polarisation, za = Πa
AX

A, in the target space, as discussed in section 2.3. For locally

geometric backgrounds, only d of the 2d X
A fields correspond to independent physical

degrees of freedom and, once a polarisation is specified, those coordinates that are chosen

to play the role of the auxiliary z̃a may be written in terms of the physical (x, za), provided

the z̃a only appear through their derivative dz̃a. The precise relationship between the

(derivative of the) auxiliary z̃a and the physical coordinates (x, za) is given by the self-

duality constraint (4.7). It is this constraint (4.7) which ensures that, when a global

polarisation can be found, the physical sigma model can be described purely in terms of

the local physical space-time coordinates xi = (x, za) selected by this polarisation.

As explained in section 2.3, the polarisation Π may not be globally defined and it may

not always be possible to globally choose which d of the 2d fibre coordinates X
A will be iden-

tified as the physical coordinates za. Over a contractible patch of the base M , we can define

a polarisation which selects coordinates za from the doubled X
A. This then gives a patch

of spacetime with coordinates (xu, za). As explained in section 2.3 and also in 2.4, these

patches must be carefully glued together to obtain a global description of the target space.

Of particular interest is the case where M = S1
x and T = G/Γ, as described in section 2.

In this case it is possible to define a constant polarisation on the interval Ix, given by

0 ≤ x < 1, of the base. The metric and B-field on Ix ×T 2d can be extended to Rx×T 2d by

continuing in x, as was done for the five-dimensional doubled torus bundle in section 3.2.1.

This gives a covering space CT of T in which the identification (x, XA) ∼ (x+1, (e−N )ABX
B)

is dropped and the cover may be thought of as the coset CT ≃ G/ΓC , where ΓC is the

subgroup of Γ which gives the identifications of the T 2d coordinates only. The subgroup

G̃L ≃ R
d ⊂ GL generated by X̃a is preserved by ΓC , so that the coset CT /G̃L is well-defined.

The self-duality constraint (4.10) may be consistently imposed on the coordinates of this

cover, eliminating all z̃a dependence so that the sigma model is written solely in terms of

the embedding into the target space directions with coordinates x and za. The doubled

sigma model (4.9) then reduces to a sigma model with target space given by CT /G̃L - a

T d fibration over Rx. As described in section 2.3, one may then replace Rx with S1
x by

identifying the remaining target space coordinates under the full action of Γ.
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We now turn to consider in more detail how the constraint (4.10) is imposed on the

doubled torus sigma model (4.9). In section 5 we shall consider several explicit applications

of this formalism.

4.4 The classical theory

In this section and the next we concentrate on the (2d + 1)-dimensional doubled torus

bundle T = G/Γ for which the base of the T d bundle is M = S1
x. We first consider

the cover CT given by replacing S1
x with Rx. A polarisation Π can be globally defined

on this cover. Once a polarisation is specified, the metric gab and B-field Bab on the

physical T d can be extracted from the generalised metric MAB (2.28). It is also useful to

define the polarisation of the corresponding GL-invariant one-forms (4.8) P a = Πa
APA and

Qa = Π̃aAPA where

P a = (eNx)abdzb + (eNx)abdz̃b Qa = (eNx)a
bdz̃b + (eNx)abdzb (4.11)

The self-duality constraint (4.10) may then be written as

Qa = gab ∗ (P b + Ab) + BabP
b + BaxP x (4.12)

where P a and Qa are given by (4.11). Note that z̃a only appears as the derivative dz̃a

in (4.11) and (4.12). In the classical theory, one considers the z̃a to be auxiliary fields and

eliminates all dz̃a-dependence in the equations of motion using (4.12), leaving the equations

of motion written in terms of x, dx and dza only. The requirement that the polarisation

selects a null space with respect to LAB ensures that the z̃a dependence may be completely

eliminated from the equations of motion using the self-duality constraint. If we now impose

the identification x ∼ x+1, in effect replacing Rx with S1
x again, we must consider how the

theory in the physical T d fibres is patched together. As explained in section 2.3, if the po-

larisation is not globally defined, i.e. if G̃L does not preserve and is not preserved by Γ, then

this local description in terms of the coordinates x and za does not extend globally. Impos-

ing the constraint (4.10) in the quantum theory is more involved, as we shall now discuss.

4.5 The quantum theory

Let us consider first the (2d + 1)-dimensional doubled target space CT , which may be

thought of as a cover of the doubled torus bundle T ≃ G/Γ. As seen in section 2, for

a given polarisation, a cover of the (d + 1)-dimensional physical target space is given by

the coset CT /G̃L, where G̃L ⊂ GL is the subgroup selected by the polarisation Π. More

generally, a sigma model on the coset H/K is obtained by gauging a K ⊂ H symmetry

of the sigma model on H. Applying this to the case here, a conventional sigma model

description of the background is then recovered locally by gauging the left-acting abelian

isometry group G̃L ≃ R
d ⊂ GL (generated by X̃a = ΠaAT̃A) of the doubled formalism

sigma model (4.9) with target space G [8].

Now let us consider the case where the doubled target space is the compact twisted

torus T = G/Γ. As discussed in section 2, if Γ preserves and is preserved by G̃L, then

the action of G̃L is well-defined on T and the sigma model on the physical T d bundle is
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recovered globally as the sigma model on the quotient T /G̃L. This sigma model is given

by gauging the G̃L ≃ R
d subgroup of G for the sigma model on T . If G̃L is not preserved

by Γ, then the physical background is not a T d bundle, but a T-fold. In this case the sigma

model in the patch over 0 ≤ x < 1 may be given again by gauging the sigma model as

described above. A global description of the target space is given by identifying x ∼ x + 1

as discussed in sub-section 2.3.

We now review how the gauging imposes the constraint (4.10) and selects a polarisa-

tion, following [8]. We first consider a sigma model with target space CT , the cover of T ,

upon which a global polarisation may be defined. The polarisation selects a subset of the

coordinates z̃a which are the auxiliary ones to be eliminated, and a subgroup G̃L ⊂ GL.

The generators X̃a of G̃L act as shifts on the auxiliary coordinates z̃a, δz̃a = ǫa, which are

isometries of the doubled metric H. The vector fields X̃a will be well-defined on a cover CT
in general. Gauging this isometry requires the introduction of the world-sheet gauge fields,

which are one-forms Ca = Caα(τ, σ)dσα, and allowing the parameters to depend on the

world-sheet coordinates ǫa = ǫa(τ, σ). The one-forms transform under the local symmetry

as δCa = −dǫa so that the derivatives

DX
A = dX

A + ΠAaCa

are gauge-invariant. The minimal coupling dX
A → DX

A is equivalent to the minimal

coupling of the auxiliary fields dz̃a → Dz̃a = dz̃a + Ca, and this allows dz̃a to be absorbed

into a shift of Ca.

For the example considered here, where the bundle T is given by a duality-twist (2.9),

it is useful to consider CA, related to the one-form Ca by the action of the twist matrix on

the projection with the polarisation tensor:

CA = (eNx)ABΠBaCa (4.13)

If we then define Ca = Πa
ACA and Ca = Π̃aACA we may write

Ca = (eNx)abCb Ca = (eNx)a
bCb

For the choice of polarisation in which Qab = Πa
ANA

BΠbB is zero, Qab = 0, we have Ca = 0

and P a is left unaltered by the minimal coupling. If Qab 6= 0, then Ca 6= 0 and both P a

and Qa receive minimal coupling corrections.

The gauged sigma model is obtained by first introducing the minimal coupling

PA → PA + CA = (eNx)ABDX
B

of the one-forms in the kinetic term of (4.9) and then adding the term

1

2

∮

Σ
LABPA ∧ CB (4.14)

to (4.9), as shown in [8]. The resulting gauged sigma model is

S
CT / eGL

=
1

2

∮

Σ
GP x ∧ ∗P x +

1

4

∮

Σ
MABPA ∧ ∗PB +

1

2

∮

Σ
CA ∧ ∗JA +

1

2

∮

Σ
PA ∧ ∗JA

+
1

4

∮

Σ
ΩABdX

A ∧ dX
B +

1

4

∮

Σ
MABCA ∧ ∗CB (4.15)
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where

JA = MABPB − LAB ∗ PB + JA (4.16)

The self-duality constraint (4.10) may be written as

JA = 0

The gauging consists of adding the linear term

1

2

∮

Σ
CA ∧ ∗JA

which, because of the polarisation projector in the definition (4.13) of CA, is a coupling to

half of the components of JA. Then further terms, including ones quadratic in the gauge

field, are added to obtain gauge invariance. The coupling CA ∧ ∗JA leads in the quantum

theory to a BRST charge that imposes the constraint JA = 0 on physical states, as will be

shown in section 4.6.

The action (4.15) can be expanded out by substituting in the expressions (2.28), (4.11)

and (4.13) for the chosen polarisation. By completing the square in the one-forms Ca, one

can show that the gauged action splits into two parts

S
CT / eGL

[x, XA, Ca] = S1[x, za] + S2[λa]

where λa = (eNx)a
b(Cb + dz̃b) + · · · . If the polarisation selects a subgroup G̃L that is

null with respect to LAB, then the Lagrangian for S2[λa] is quadratic in λa and we may

perform the integration over the gauge fields Ca = (e−Nx)a
bλb + · · · to leave the action

S1[x, za]. This action is that of the conventional sigma model embedding into the physical

(d + 1)-dimensional target space CT /G̃L with coordinates xi = (x, za). Integrating out Ca

gives a determinant which contributes to the dilaton term in the action so that the dilaton

of the conventional sigma model φ is related to that of the doubled sigma model Φ by4

Φ = φ − 1

2
ln(g(x))

where g(x) = det(gab(x)).

Here we have worked with the covering space, in which the vector fields X̃a which

generate G̃L are well-defined. If they are well-defined in the quotient, then we can make

the identification x ∼ x + 1 to obtain the theory on the quotient. If this is not the case,

there is no global description, and one is led to working with different polarisations in

different patches, as discussed in [7].

Different choices of polarisation select different sets of generators T̃A to be identified as

the X̃a and therefore a different embedding G̃L, G̃′
L, . . . of the abelian subgroup R

d ⊂ GL. In

this way, different choices of polarisation lead to different gaugings and results in recovering

sigma models for different backgrounds from the doubled sigma model (4.9).

4It is this, T-duality-invariant, dilaton Φ which plays the role of the string coupling in String Field

Theory [39, 40].
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4.5.1 Example: recovering N from T
To see how this works in practice, we consider how the sigma model for a conventional

T d bundle background given by the action (4.4) is recovered from (4.9) given a choice of

polarisation. Consider the case discussed in section 2.1 in which the only non-trivial element

of the twist matrix is fa
b = Πa

ANA
BΠ̃b

B , and the B-field is zero. In this example, general

elements g ∈ G and h ∈ Γ may be written as

g =




(efx)ab 0 za

0 (e−fx)a
b z̃a

0 0 1


 h =




(efα)ab 0 αa

0 (e−fα)a
b α̃a

0 0 1




This polarisation selects a subgroup G̃L ≃ R
d ⊂ GL generated by X̃a where

Z̃x =
∂

∂x
+ fa

bz
b ∂

∂za
− fa

bz̃b
∂

∂z̃a
Z̃a =

∂

∂za
X̃a =

∂

∂z̃a

These vector fields are not invariant under Γ, but transform as

Z̃x → Z̃x Z̃a → (e−fα)baZ̃b X̃a → (efα)b
aX̃b

and we see that, as expected, G̃L is preserved by Γ. The quotient N ≃ T /G̃L is therefore

well-defined.

We introduce the one-forms Ca and their SL(d; Z)-twisted counterparts Ca = 0 and

Ca = (e−fx)a
bCb and the background fields

MÂB̂ =

(
hab 0

0 hab

)
AÂ

x =

(
Aa

x

0

)

In this polarisation the currents (4.6) and (4.16) are given by

Ja = ΠaAJA = − ∗ Aa Ja = Π̃a
AJA = habA

b

J a = ΠaAJA = habQb − ∗(P a + Aa) Ja = Π̃a
AJA = hab(P

b + Ab) − ∗Qa

where P a = (efx)abdzb and Qa = (e−fx)a
bdz̃b.

Using these expressions for MÂB̂ , AÂ, PÂ, JÂ and JÂ in (4.15) gives the Lagrangian

L
T / eGL

=
1

2

(
1 +

1

2
habA

a
xAb

x

)
P x ∧ ∗P x +

1

4
habP

a ∧ ∗P b +
1

4
habQa ∧ ∗Qb

+
1

2
Ca ∧ ∗J a +

1

2
P a ∧ ∗Ja +

1

2
Qa ∧ ∗Ja +

1

2
P a ∧ Qa +

1

4
habCa ∧ ∗Cb

where we have used the fact that ΩÂB̂dX
Â ∧ dX

Â = 2dza ∧ dz̃a = 2P a ∧ Qa. Completing

the square in Ca gives the action S
T / eGL

[x, XA, Ca] = S1[x, za] + S2[λa] where

S1[x, za] =
1

2

∮

Σ
(1 + habA

a
xAb

x)P x ∧ ∗P x +
1

2

∮

Σ
habP

a ∧ ∗P b +

∮

Σ
P a ∧ ∗Ja
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is the standard sigma model (4.4) on the torus bundle N given by a T d fibration over

S1
x with metric in the torus fibres given by gab(x) = (efx)a

chcd(e
fx)db and connections

(e−fx)abA
b. The action S2[λa] is

S2[λa] =
1

4

∮

Σ
habλa ∧ ∗λb

where λa = Qa + Ca − hab ∗ (P b + Ab) appears quadratically. The fields Ca, not λa, appear

in the measure of the path integral and integrating out Ca gives a shift to the dilaton

φ → φ − 1

2
ln(g(x)) (4.17)

where g(x) = det(gab(x)).

4.6 Gauging, quotient spaces and the self-duality constraint

Gauging reduces the sigma model on T (or CT ) to that on the quotient T /G̃L (or CT /G̃L).

We now review how this gauging imposes the constraint (4.10), using BRST arguments.

For simplicity, consider the case of a trivial bundle where AA = 0. The gauged action may

be written as

S
CT / eGL

=
1

4

∮

Σ
HABdX

A ∧ ∗dX
B +

1

4

∮

Σ
ΩABdX

A ∧ ∗dX
B +

1

2

∮

Σ
dx ∧ ∗dx

+
1

2

∮

Σ
Ca ∧ ∗J a +

1

4

∮

Σ
gabCa ∧ ∗Cb (4.18)

where the current J a = ΠaA(e−Nx)A
BJB and we have written gab(x) = HAB(x)ΠAaΠBb.

The self-duality constraint (4.10) is JA = 0 and it was shown in [8] that this is implied

by the apparently weaker constraint J a = 0. We now review how the gauging correspond-

ing to a polarisation Π constrains the current J a to vanish in the quantum theory.

It is useful to write the action in world-sheet light-cone coordinates ξ± = τ ± σ where

∂± = (∂τ ± ∂σ)/2. The gauged action may then be written as

SCT / eGL
= −1

2

∮

Σ
d2ξ HAB(x)∂+X

A∂−X
B − 1

2

∮

Σ
d2ξ ΩAB∂+X

A∂−X
B −

∮

Σ
d2ξ ∂+x∂−x

−1

2

∮

Σ
d2ξ (C−aJ+

a + C+aJ−
a) − 1

2

∮

Σ
d2ξ gab(x)C−aC+b (4.19)

For simplicity, we neglect global issues due to the action of Γ and consider the doubled

target space of the ungauged sigma model to be the cover, CT .

The action (4.19) is invariant under the infinitesimal G̃L gauge transformations

δǫX
A = ΠAaǫa δǫCa± = −∂±ǫa δǫx = 0

We will fix this with the gauge choice C−a = 0 (strictly speaking, in general one would need

to set C−a to a constant modulus and integrate over that modulus). We introduce a ghost

field ca for these transformations, and an anti-ghost field b+
a and Lagrange multiplier field

π+
a. The BRST transformations with Grassmann-odd constant parameter Λ are then

δQX
A = ΛΠAaca δQC−±a = −Λ∂±ca δQca = 0

δQx = 0 δQb+
a = Λπ+

a δQπ+
a = 0

(4.20)
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We gauge fix by adding the BRST exact term SQ to the action given by

ΛSQ = δQ

∮

Σ
d2ξ b+

aC−a

so that

SQ =

∮

Σ
d2ξ π+

aC−a +

∮

Σ
d2ξ b+

a∂−ca (4.21)

The Lagrange multiplier field π+
a imposes the gauge condition C−a = 0. The equation

of motion for C−a gives the on-shell value of π+
a as

π+
a =

1

2
J+

a +
1

2
gab(x)C+b

Integrating out π+
a, the action is now

SCT / eGL
= −1

2

∮

Σ
d2ξ HAB∂+X

A∂−X
B − 1

2

∮

Σ
d2ξ ΩAB∂+X

A∂−X
B −

∮

Σ
d2ξ ∂+x∂−x

−1

2

∮

Σ
d2ξ C+aJ−

a +

∮

Σ
d2ξ b+

a∂−ca (4.22)

which has the BRST symmetry

δQX = ΛΠAaca δQca = 0 δQC+a = 0

δQx = 0 δQb+
a =

1

2
Λ
(
J+

a + gabC+b

) (4.23)

where π+
a has been replaced by its on-shell value. We see, from (4.22), that C+a is a

Lagrange multiplier field which enforces the constraint J−
a = 0. Integrating out C+a

in (4.22) gives the action

S
CT / eGL

= −1

2

∮

Σ
d2ξ HAB∂+X

A∂−X
B − 1

2

∮

Σ
d2ξ ΩAB∂+X

A∂−X
B

−
∮

Σ
d2ξ ∂+x∂−x +

∮

Σ
d2ξ b+

a∂−ca (4.24)

which has BRST symmetry

δQX = ΛΠAaca δQca = 0

δQx = 0 δQb+
a =

1

2
ΛJ+

a
(4.25)

generated by the BRST charge

Q =

∮
JQ =

1

2

∮
dξ+caJ+

a (4.26)

The physical states are the Q cohomology classes with ghost number zero. A state of ghost

number zero is annihilated by b+
a, so that the physical state condition Q|Ψ〉 = 0 implies

J+
a|Ψ〉 = 0

We see then that the BRST constraints imply the J+
a = 0 on physical states, while

J−
a = 0 is imposed by a Lagrange multiplier. This completes the argument that the

gauging imposes the constraint J±
a = 0, and this then implies (4.10), as shown in [8].
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5 Non-linear sigma model examples

In this section we revisit the three locally geometric, three-dimensional, examples discussed

in section 3 from the point of view of the world-sheet theory described in the previous

section. Recall that each of the examples considered in section 3 could be thought of as

a T 2 fibration over S1
x. The base has coordinate x ∼ x + 1 and the coordinates on the

T 2 fibres are za = (y, z). These backgrounds can be equivalently written in terms of the

five-dimensional T 4 bundle T . The non-linear sigma model, describing the embedding of

the world-sheet Σ into the doubled torus bundle T , is then given by the action (4.9). In

this section we shall only consider backgrounds in which Aa
x and Bax are zero so that

JA = 0. This is done for convenience and the generalisation to more general backgrounds

is straightforward. We shall also choose the x-independent doubled metric to be M = 14.

The x-dependent doubled metric and connection are then

HAB = (eNx)A
CδCD(eNx)DB AA = 0

The gauged sigma model (4.15) is

S =
1

2

∮

Σ
P x ∧ ∗P x +

1

4

∮

Σ
δABPA ∧ ∗PB +

1

2

∮

Σ
CA ∧ ∗JA

+
1

4

∮

Σ
ΩABdX

A ∧ dX
B +

1

4

∮

Σ
δABCA ∧ ∗CB (5.1)

where

JA = δABPB − LAB ∗ PB CA = (eNx)ABΠBaCa

where the two gauge fields Ca are selected by the choice of polarisation. We choose co-

ordinates X
A = (X1, X2, X3, X4) on the torus fibres so that the twist matrix NA

B and

monodromy matrix eN can be written as

NA
B =




0 0 0 0

−m 0 0 0

0 0 0 m

0 0 0 0


 (eN )AB =




1 0 0 0

−m 1 0 0

0 0 1 m

0 0 0 1




where m ∈ Z. From (2.9), the twist matrix N determines the structure constants of the

algebra (2.8). The left-invariant world-sheet one-forms P x and PA are

P x = dx P1 = dX
1 − mxX

2 P2 = dX
2

P3 = dX
3 P4 = dX

4 + mxX
3

(5.2)

where PA = (P1,P2,P3,P4) are left-invariant one-forms on G. The generators of the left

action GL also play an important role and, with this coordinate choice, may be written as

Z̃x =
∂

∂x
+ mX

2 ∂

∂X1
− mX

3 ∂

∂X4
T̃A =

∂

∂XA
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5.1 Recovering the Nilfold from T
Given the coordinate choice on the T 4 fibres above, we recover the Nilfold by the choice of

polarisation projector Π and corresponding polarisation tensor Θ = (Π, Π̃) where

Πa
A =




1 0

0 1

0 0

0 0


 Π̃aA =




0 0

0 0

1 0

0 1




This means that (X1, X2) are selected as the physical coordinates y, z and (X3, X4) are

selected as the auxiliary coordinates ỹ, z̃, which we write as X
Â = (y, z, ỹ, z̃). From (2.8)

and (2.9), this polarisation leads to the only non-vanishing structure constants of the gauge

algebra (2.8) being fxz
y = Π̃zANA

BΠyB = m ∈ Z. The left-invariant one-forms are then

PA = (P y, P z, Qy, Qz) (5.3)

where
P x = dx P y = dy − mxdz Qy = dỹ

P z = dz Qz = dz̃ + mxdỹ
(5.4)

The polarisation projector which acts as X̃a = ΠaAT̃A, where ΠaA = Πa
BLAB can be

written in this basis as

ΠaA =

(
0 0 1 0

0 0 0 1

)
Π̃a

A =

(
1 0 0 0

0 1 0 0

)

where Π̃a
A = Π̃aBLAB has been included for completeness. The projector ΠaA selects out

the abelian subgroup G̃L ≃ R
2 ⊂ GL generated by the vector fields X̃y and X̃z, so that

the generators of the left action T̃A = (T̃1, T̃2, T̃3, T̃4) are, in this polarisation, given by

T̃Â = (Z̃y, Z̃z, X̃
y, X̃z). The vector fields generating G̃L are not globally defined on T and

under the shift x → x + α they transform as

X̃y → X̃y + mαX̃z X̃z → X̃z

however, we see that Γ preserves the subgroup G̃L ≃ R
2 ⊂ GL generated by (X̃y, X̃z). The

quotient T /G̃L is therefore a well-defined submanifold of T .

As described in the previous section, the sigma model on T /G̃L is given by gauging

the G̃L ⊂ GL rigid symmetry of the sigma model (5.1). We introduce the world-sheet

one-forms Cy and Cz and, as described in section 4.5, the duality-twisted gauge fields CA =

(eNx)ABΠBaCa. Using the polarisation projectors and the expression for the monodromy

matrix in (3.1) and (3.11), it is not hard to show that the twisted gauge fields CA and the

constraint current JA are written in this polarisation as

CÂ = ( 0 , 0 , Cy , Cz + mxCy ) JÂ =




P y − ∗Qy

P z − ∗Qz

Qy − ∗P y

Qz − ∗P z


 (5.5)
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from which it is clear that the vanishing of the current JÂ implies P y = ∗Qy and P z = ∗Qz.

As argued in the previous section, it is enough to show that if J a = ΠaAJA is constrained

to vanish then JA must also vanish. The minimal coupling PA → PA +CA = (eNx)ABDX
B

introduces gauge-invariant derivatives for the dual fibre coordinates;

dỹ → dỹ + Cy dz̃ → dz̃ + Cz

Substituting (5.3) and (5.5) into the gauged doubled torus sigma model (4.15) and noting

that the topological term may be written as

1

4
ΩÂB̂dX

Â ∧ dX
B̂ =

1

2
P y ∧ Qy +

1

2
P z ∧ Qz

the Lagrangian of the gauged action can be expanded out to give

LT / eGf
=

1

2
P x ∧ ∗P x +

1

4
P y ∧ ∗P y +

1

4
P z ∧ ∗P z

+
1

4
Qy ∧ ∗Qy+

1

4
Qz ∧ ∗Qz+

1

2
Cy ∧ ∗Qy+

1

2
Cz ∧ ∗Qz+

1

4
Cy ∧ ∗Cy+

1

4
Cz ∧ ∗Cz

−1

2
Cy ∧ P y − 1

2
Cz ∧ P z +

1

2
P y ∧ Qy +

1

2
P z ∧ Qz

After a little rearrangement, this can be written as

L
T / eGf

=
1

2
P x ∧ ∗P x +

1

4
P y ∧ ∗P y +

1

4
P z ∧ ∗P z

+
1

4
(Qy + Cy) ∧ ∗(Qy + Cy) +

1

4
(Qz + Cz) ∧ ∗(Qz + Cz)

1

2
P y ∧ (Qy + Cy) +

1

2
P z ∧ (Qz + Cz)

Completing the square in Qy + Cy and Qz + Cz gives the action

S
T / eGf

= S1[x, za] + S2[λa]

where

S1[x, za] =
1

2

∮

Σ
P x ∧ ∗P x +

1

2

∮

Σ
P y ∧ ∗P y +

1

2

∮

Σ
P z ∧ ∗P z

is the action for the sigma model with the nilfold as target space and

S2[λa] =
1

4

∮

Σ
λy ∧ ∗λy +

1

4

∮

Σ
λz ∧ ∗λz

where

λy = Cy + dỹ − ∗dy λz = Cz + dz̃ + mxCy + mxdỹ − ∗dz

The topological term SΩ does not contribute to the equations of motion but plays an

important role in the quantum theory as it allowed us to complete the square and separate

the action into two distinct parts without dropping surface terms. Eliminating the auxiliary

fields Ca leaves the action S1 for the nilfold sigma model, as required.

– 63 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
4

5.2 Recovering the T 3 with H-flux background from T
Given the coordinate choice on the T 4 fibres above, we recover the T 3 background with

constant H-flux by the choice of polarisation projector Π and corresponding polarisation

tensor Θ = (Π, Π̃), where

Πa
A =




0 0

0 1

1 0

0 0


 Π̃aA =




1 0

0 0

0 0

0 1


 (5.6)

This means that (X3, X2) are selected as the physical coordinates (y, z) and (X1, X4) are

selected as the auxiliary coordinates (ỹ, z̃), so that X
A = (ỹ, z, y, z̃) and the corresponding

one-forms are PA = (Qy, P
z, P y, Qz) respectively. From (2.9) and (5.6), this polarisation

leads to the only non-vanishing structure constants of the gauge algebra (2.8) being Kxyz =

Π̃yANA
BΠ̃z

B = m ∈ Z, and the left-invariant one-forms may be written

P x = dx P y = dy P z = dz

Qy = dỹ − mxdz Qz = dz̃ + mxdy
(5.7)

The generators of the left action T̃A = (T̃1, T̃2, T̃3, T̃4) are, in this polarisation, given by T̃Â =

(X̃y , Z̃z, Z̃y, X̃
z). The polarisation projectors ΠaA and Π̃a

A can be written in this basis as

ΠaA =

(
1 0 0 0

0 0 0 1

)
Π̃a

A =

(
0 0 1 0

0 1 0 0

)

The projector ΠaA selects out the abelian subgroup G̃L ≃ R
2 ⊂ G generated by the vector

fields X̃y and X̃z. These vector fields are globally defined on T and so the quotient T /G̃L

is therefore a well-defined sub-manifold of T .

The sigma model on T /G̃L is given by gauging the G̃L ⊂ GL rigid symmetry of the

sigma model (5.1). We introduce the world-sheet one-forms Cy and Cz and, as described in

section 4.5, the duality-twisted gauge fields CA = (eNx)ABΠBaCa. The minimal coupling

introduces gauge-invariant derivatives for the dual fibre coordinates;

dỹ → dỹ + Cy dz̃ → dz̃ + Cz

The twisted gauge fields are written in this polarisation as

CÂ = (0 , 0 , Cy , Cz) (5.8)

Substituting (5.7) and (5.8) into the gauged doubled torus sigma model (4.15) and noting

that the topological term may be written as

1

4
ΩÂB̂dX

Â ∧ dX
B̂ =

1

2
P y ∧ Qy +

1

2
P z ∧ Qz + mxdy ∧ dz

the Lagrangian of the gauged action can be expanded out to give

L
T / eGK

=
1

2
P x ∧ ∗P x +

1

4
P y ∧ ∗P y +

1

4
P z ∧ ∗P z +

1

2
P y ∧ (Qy + Cy) +

1

2
P z ∧ (Qz + Cz)

+
1

4
(Qy + Cy) ∧ ∗(Qy + Cy) +

1

4
(Qz + Cz) ∧ ∗(Qz + Cz) + mxdy ∧ dz
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If we now complete the square in Qy + Cy and Qz + Cz the action splits in two ST / eGK
=

S1[x, za] + S2[λa] where

S1[x, za] =
1

2

∮

Σ
dx ∧ ∗dx +

1

2

∮

Σ
dy ∧ ∗dy +

1

2

∮

Σ
dz ∧ ∗dz +

∫

V
mdx ∧ dy ∧ dz

The term involving the B-field B = mxdy ∧ dz has been written as a three-dimensional

integral of the H-field strength H = mdx ∧ dy ∧ dz, pulled back to a three-dimensional

extension of the world-sheet V where ∂V = Σ. S2[λa] is given by

S2[λa] =
1

4

∮

Σ
λy ∧ ∗λy +

1

4

∮

Σ
λz ∧ ∗λz

where

λy = Qy + Cy − ∗P y λz = Qz + Cz − ∗P z

Eliminating the auxiliary fields C leaves the action S1 for the sigma model whose target

space is a T 3 with constant flux H = mdx ∧ dy ∧ dz, as required.

5.3 Recovering the T-fold from T
We recover the T-fold background by the choice of polarisation projector Π and corre-

sponding polarisation tensor Θ = (Π, Π̃)

Πa
A =




1 0

0 0

0 0

0 1


 Π̃aA =




0 0

0 1

1 0

0 0


 (5.9)

We will work with the covering space of the T-fold, so that x is for the moment regarded

as non-compact. This means that (X1, X4) are selected as the physical coordinates (y, z),

so X
A = (y, z̃, ỹ, z) while PA = (P y, Qz, Qy, P

z). From (2.9) and (5.9), this polarisation

leads to the only non-vanishing structure constants of the gauge algebra (2.8) being Qx
yz =

Πy
ANA

BΠzB = m ∈ Z. The left-invariant one-forms may be written as

P x = dx P y = dy − mxdz̃ P z = dz + mxdỹ

Qy = dỹ Qz = dz̃
(5.10)

The generators of the left action T̃A = (T̃1, T̃4, T̃3, T̃4) are, in this polarisation, given by

T̃A = (Z̃y, X̃
z, X̃y , Z̃z). The polarisation projectors can be written in this basis as

ΠaA =

(
1 0 0 0

0 0 0 1

)
Π̃aA =

(
0 0 1 0

0 1 0 0

)

The projector ΠaA selects out the abelian subgroup G̃L ≃ R
2 ⊂ G generated by the vector

fields X̃y and X̃z . These vector fields are not well-defined under the shift x → x + α and

transform as

X̃y → X̃y + mαZ̃z X̃z → X̃z − mαZ̃y
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and Γ does not preserve the subgroup G̃L generated by (X̃y, X̃z). These generators are well-

defined on the cover CT ≃ G/ΓC , where ΓC is the subgroup of Γ which leaves x invariant, and

so we consider the sigma model with target space CT initially here. As before, it is useful

to introduce the left-invariant gauge one-forms CA = (eNx)ABΠBaCa, where here we have

CÂ = (−mxCz , mxCy , Cy , Cz )

Introducing the gauge-invariant derivatives Dy = dy + Cy and Dz = dz + Cz, the minimal

coupling PA → PA + CA may then be written as

P y → dy − mxDz̃ Qy → Dỹ

P z → dz + mxDỹ Qz → Dz̃
(5.11)

The Lagrangian for the G̃L-gauging of the sigma model on the cover CT is given by the

Lagrangian

LCT / eGQ
=

1

2
dx ∧ ∗dx +

1

4
dy ∧ ∗dy +

1

4
dz ∧ ∗dz

+
1

4

(
1 + (mx)2

)
Dỹ ∧ ∗Dỹ +

1

4

(
1 + (mx)2

)
Dz̃ ∧ ∗Dz̃

−1

2
Dỹ ∧ (dy − mx ∗ dz) − 1

2
Dz̃ ∧ (dz + mx ∗ dy) (5.12)

Completing the square in Cy and Cz as before, the gauged theory may be written as

LCT / eGQ
=

1

2
dx ∧ ∗dx +

1

2(1 + (mx)2)
(dy ∧ ∗dy + dz ∧ ∗dz)

+
mx

1 + (mx)2
dy ∧ dz +

1

4
(1 + (mx)2) (λy ∧ ∗λy + λz ∧ ∗λz) (5.13)

where

λy = Cy + Qy −
1

1 + (mx)2
(∗dy − mxdz) λz = Cz + Qz −

1

1 + (mx)2
(∗dz + mxdy)

so we see that the action splits into two parts SCT = S1[x, za] + S2[λa] where

S1[x, za] =
1

2

∮

Σ
dx ∧ ∗dx +

1

2

∮

Σ
gabdza ∧ ∗dzb +

1

2

∮

Σ
B̂abdza ∧ dzb

The metric and B-field on the T 2 fibres are

gab =
1

1 + (mx)2

(
1 0

0 1

)
Bab =

mx

1 + (mx)2

(
0 1

−1 0

)

which is the background (3.14), and

S2[λa] =
1

4

∮

Σ
(1 + (mx)2)δabλa ∧ ∗λb

The Ca are again auxiliary fields that can be eliminated in the classical theory. In the quan-

tum theory, the Jacobean between the λa and the Ca is trivial but the integration over the
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λa gives a non-trivial x-dependent shift of the dilaton due to the factor of (1 + (mx)2)/4

in front of the λa terms. The correction to the dilaton is

φ → Φ = φ − ln(1 + (mx)2)

The result is the sigma model with action S1 plus a dilaton term, so that the target space is

a T 2 fibration over the line Rx - a cover of the T-fold. The conventional T-fold background

is recovered by the identification x ∼ x + 1 so that Rx → S1
x as described in section 3.

6 Worldsheet theory for the doubled twisted torus

As discussed in sections 2.4, 3.3 and [22], we propose to extend the doubled torus con-

struction for the models of sections 2.4 and 3.3 by introducing an additional direction with

coordinate x̃ that is conjugate to the winding number on the x-circle. This then gives a

full geometric interpretation to the gauge algebra (2.8) as the generators then all act geo-

metrically on the enlarged space. From the group-theoretic point of view, this extension is

natural and we shall see that the models of section 3.1 and section 5 are recovered. However,

this extended formalism also suggests a formulation of models that have non-trivial R-flux

that might arise from the action of a generalised T-duality of the kind proposed in [10].

In this section, we discuss the world-sheet theory for the sigma-model whose target is this

doubled space, and the constraint that halves the doubled degrees of freedom and allows the

conventional formulation to be recovered, at least for the locally geometric backgrounds.

However, it also leads to a formulation on backgrounds that are not even locally geometric.

We represent the Lie algebra (2.8) as acting on the 2(d + 1) coordinates (x, x̃, XA) of

X , where X
A are the coordinates on the doubled torus fibre T 2d, as

Zx =
∂

∂x
+ NA

BX
B ∂

∂XA
Xx =

∂

∂x̃
TA =

∂

∂XA
− 1

2
NABX

B ∂

∂x̃
(6.1)

The one-forms dual to these left-invariant vector fields satisfy the Maurer-Cartan equations

dPA − NA
BP x ∧ PB = 0 dQx − 1

2
NABPA ∧ PB = 0 dP x = 0 (6.2)

which are solved by

PA =
(
eNx

)A
BdX

B Qx = dx̃ +
1

2
NABX

AdX
B P x = dx (6.3)

It is useful to define PM = PM
IdX

I as the one-forms on X satisfying the Maurer-Cartan

equations

dPM +
1

2
tNP

MPN ∧ PP = 0 (6.4)

where txB
A = −NA

B and tx[AB] = −NAB.

The global identifications of the za, z̃a and x coordinates are fixed by identification

with the doubled torus formalism. The global identification of the x̃ coordinate remains to

be determined. From a comparison with the case tMN
P = 0, where X = T 2(d+1), in which
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we know that the radius of x̃ is the inverse to that of x (in appropriate units), we expect

the entire space X to be compact.

More generally we consider a general 2D-dimensional twisted torus X = G/Γ for a

group with Lie algebra

[TM , TN ] = tMN
P TP (6.5)

which are not necessarily of the form txB
A = −NA

B and tx[AB] = −NAB. For example, a

conventional compactification on the D-dimensional twisted torus N = G/Γ′, where Γ′ is

a cocompact subgroup of G and G has Lie algebra

[Zm, Zn] = −fmn
pZp

gives rise to a doubled group G = G ⋉ R
d where tmn

p = −fmn
p. Unless the twisted

torus N is a torus bundle the algebra of the doubled group will not be of the form (2.12).

Furthermore, if a left-invariant H-flux, Kmnp, is also included in the reduction then the

algebra is deformed further and the structure constants for the algebra are tmn
p = −fmn

p

and tmnp = Kmnp so that [21]

[Zm, Zn] = −fmn
pZp + KmnpX

p [Zm,Xn] = −fmp
nXp [Xm,Xn] = 0 (6.6)

Backgrounds that are not torus bundles cannot be described by the doubled torus bundle

T . However, they can be incorporated into a doubled twisted torus X .

6.1 Non-linear sigma-model for the doubled twisted torus

The Action describing the embedding of a closed string world-sheet Σ into the target

space X is

SX =
1

4

∮

Σ
d2σ

√
hhαβHIJ∂αX

I∂βX
J +

1

12

∫

V
d3σ′εα′β′γ′KIJK∂α′X

I∂β′X
J∂γ′X

K

+
1

2π

∮

Σ
d2σ

√
hφR(h) (6.7)

where V is an extension of the world-sheet, with coordinates σα′

, such that ∂V = Σ. We

shall choose a gauge in which the world-sheet metric hαβ is flat and Lorentzian and so the

world-sheet Ricci scalar R(h) is zero and the world-sheet Hodge star is an almost product

structure ∗2 = +1. The metric HIJ = HIJ(X) and Wess-Zumino field strength are given by

HIJ = MMNPM
IPN

J KIJK = tMNPPM
IPN

JPP
K

so that the line element and three-form on the twisted torus X may be written as

ds2
X = MMNPM ⊗ PN K =

1

6
tMNPPM ∧ PN ∧ PP

where P = G−1dG are the left-invariant one-forms, MMN takes values in the coset

O(D,D)/O(D) × O(D) and is taken to be independent of X
I and tMNP = LMQtNP

Q

are the structure constants for the Lie algebra (6.5). We can write the Wess-Zumino field
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strength as KIJK = tMNPPM
IPN

JPP
K = tMNP P̃M

IP̃N
J P̃P

K , where P̃ = dGG−1 is

the right-invariant one-form for the group G. We see then that the sigma model has a

manifest, left-acting GL symmetry. The Wess-Zumino term is invariant under GL × GR,

but the kinetic term which includes the metric HIJ(X) is only invariant under GL. We

recall that, on the twisted torus X = G/Γ, only that subgroup of GL which is preserved by

Γ will have a well-defined action. Note also that the Wess-Zumino three-form K satisfies

dK = 0 by virtue of the Jacobi identity t[MN
QtP ]Q

T = 0. An open string version of this

theory is considered in [41].

6.1.1 The constraint

The model has double the required degrees of freedom, so we seek a generalisation of the

constraint (4.10) to halve these degrees of freedom to leave the correct number. Under

infinitesimal variations in X
I , the left-invariant one-forms change as

δPM = PM
Id(δX

I) + (∂JPM
I)δX

JdX
I (6.8)

The equations of motion of the action (6.7) are then given by

d ∗MMNPN + MNP tMQ
PPQ ∧ ∗PN + LMNdPN = 0 (6.9)

The equations of motion (6.9) and Maurer-Cartan equations (6.4) are consistent with

d(PM − LMNMNP ∗ PP ) = 0. We shall then impose the constraint

PM = LMNMNP ∗ PP (6.10)

generalising (4.10).

6.1.2 The constraint from gauging

From section 2.4, the conventional spacetime is recovered locally from the doubled twisted

torus as a patch of the coset G/G̃L where G̃ ⊂ GL is a left acting subgroup that is also

maximally isotropic (i.e. the Lie-subalgebra is a maximally null subspace of the Lie algebra

of G̃ with respect to the metric LMN of signature (D,D)). A non-linear sigma model with

target space G/G̃L is obtained by gauging the left-acting G̃L ⊂ GL isometry subgroup of a

non-linear sigma model for the target space G. The sigma model

SG =
1

4

∮

Σ
HIJdX

I ∧ ∗dX
J +

1

12

∫

V
KIJKdX

I ∧ dX
J ∧ dX

K (6.11)

has rigid GL symmetry, generated by the vector field

T̃M = (P̃−1)M
I ∂

∂XI

We shall be interested in gauging the null subgroup G̃, which acts as G → g̃G for g̃ ∈ G̃.

G̃L is generated by the vector field X̃m = ΠmM T̃M so that

X̃m = ΠmM (P̃−1)M
I ∂

∂XI
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Suppose for now that Rmnp = ΠmMΠnNΠpP tMNP = 0 so that the X̃m generate a group

G̃L with Lie algebra

[X̃m, X̃n] = −fmn
pX̃

p

We will return to the case when R 6= 0 later. Under the action of the isometry the

embedding fields transform infinitesimally as

δX
I = ǫmX̃m

X
I = ΠmM (P̃−1)M

Iǫm

where the parameter is now local, ǫ → ǫ(τ, σ). We introduce Lie algebra valued one-forms

Cm which transform as connections under the gauge symmetry

δCm = dǫm − fnp
mǫpCn (6.12)

and the covariant derivatives

DX
I = dX

I + X̃mCmX
I = dX

I + (P̃−1)M
IΠMmCm

The kinetic term in (6.11) can be made gauge invariant simply by minimal coupling giving

the gauge-invariant kinetic term

SKin =
1

4

∮

Σ
HIJDX

I ∧ ∗DX
J

The gauging of the Wess-Zumino term is not simply a minimal coupling as the B

field is only invariant under the isometry action up to a gauge transformation. The gaug-

ing is achieved following the general prescription of [42]. Under an infinitesimal gauge

transformation, the Wess-Zumino term changes by

δǫSwz =
1

2

∫

V
δǫK =

1

2

∮

Σ
iǫK

where iǫ is the contraction with the vector field ǫ = ǫmX̃m and can be written as iǫ =

ǫmΠmM (P̃−1)M
IiI . We have used the fact that dK = 0 so that δǫK = (iǫd + diǫ)K = diǫK.

It is useful to define a one-form vm = vm
IdX

I on G by

vm = ΠmMLMN P̃N

which satisfies

ǫmdvm = iǫK

Then the variation of the Wess-Zumino term can be written

δǫSwz = −1

2

∮

Σ
dǫm ∧ vm

This variation can be canceled by adding the term

Sc =
1

2

∮

Σ
Cm ∧ vm (6.13)
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where Cm is the gauge field transforming as (6.12). It is not difficult to show that

δǫv
m = Lǫv

m = −ǫnfmn
pv

p + LMNΠmMΠnNdǫn

so that

δǫSc =
1

2

∮

Σ

(
dǫm ∧ vm + LMNΠmMΠnNCm ∧ dǫn

)

The first term cancels the variation of the Wess-Zumino term so that

δǫ(Swz + Sc) =
1

2
cmn

∮

Σ
Cm ∧ dǫn cmn = LMNΠmMΠnN

Since we require that the polarisation ΠmM is null with respect to LMN , the coefficient

cmn vanishes and Swz + Sc is gauge invariant. The full gauged non-linear sigma model on

G is then

SG/ eG =
1

4

∮

Σ
HIJDX

I ∧ ∗DX
J +

1

2

∮

Σ
Cm ∧ vm +

1

12

∫

V
KIJKdX

I ∧ dX
J ∧ dX

K

We stress the fact that the gauging requires that vm is globally defined and the gauge

group G̃L ⊂ GL is maximally isotropic, i.e. the polarisation is null.

We define the one-forms C = G−1CG so that Cm∧vm = LMNCM ∧PN and the gauged

theory can be written as

SG/ eG =
1

4

∮

Σ
MMNPM∧∗PN+

1

2

∮

Σ
CM∧∗JM+

1

4

∮

Σ
MMNCM∧∗CN+

1

12

∫

V
tMNPPM∧PN∧PP

where

JM = MMNPN − LMN ∗ PN

We note that the constraint (6.10) may be written as JM = 0.

As in the doubled torus construction, the conventional undoubled theory is recovered

by eliminating the gauge fields Cm, which again appear quadratically as auxiliary fields. In

the quantum theory, integrating out Cm generates a shift in the dilaton.

As an example, let us consider a general twisted torus with H-flux as discussed at the

beginning of this section and in [21, 32]. The doubled group G in this case is generated by

the Lie algebra (6.6) where the non-zero structure constants of the algebra (6.5) are

Π̃m
M Π̃n

NΠp
P tMN

P = fmn
p Π̃m

M Π̃n
N Π̃p

P tMNP = Kmnp

The Maurer-Cartan equations for the left-invariant one-forms on G are

dPm +
1

2
fnp

mPn ∧ P p = 0 dQm − fmn
pQp ∧ Pn − 1

2
KmnpP

n ∧ P p = 0 (6.14)

These one-forms are dual to the vector fields generating the right-acting gauge alge-

bra (6.6). The right-invariant left action, GL is generated by T̃Â = (Z̃m, X̃m) which satisfy

the Lie algebra

[Z̃m, Z̃n] = fmn
pZ̃p − KmnpX̃

p [Z̃m, X̃n] = fmp
nX̃p [X̃m, X̃n] = 0
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Gauging the left acting subgroup G̃L generated by X̃m requires the introduction of the

one-form fields Cm by minimal coupling

P = G−1dG → G−1DG = G−1 (d + C)G (6.15)

It is useful to define C = G−1CG, so that

PM → PM + CM CM =
(
G−1CG

)M
(6.16)

In the current example (6.14) one can show that ΠM
mCM = 0 and we may write

PM → P̂M = PM + ΠMmCm ⇔ Qm → Qm + Cm (6.17)

where Cm = Π̃mMCM .

The gauged action is then

S =
1

4

∮

Σ
MMN P̂M ∧ ∗P̂N +

1

2

∮

Σ
LMNPM ∧ ΠNmCm +

1

12

∫

V
tMNPPM ∧ PN ∧ PP

where, for this example, the Wess-Zumino term is

Swz =
1

4

∫

V
fnp

mQm ∧ Pn ∧ P p − 1

12

∫

V
KmnpP

m ∧ Pn ∧ P p

=
1

2

∮

Σ
Pm ∧ Qm +

1

6

∫

V
KmnpP

m ∧ Pn ∧ P p (6.18)

Note that we have used the fact that Pm ∧ Qm is globally defined to write the two-

dimensional term. Expanding the gauged action using (6.18) and then completing the

square in Cm, the doubled action may be written

S =

∮

Σ

(
1

2
gmnPm ∧ ∗Pn +

1

2
BmnPm ∧ Pn +

1

4
gmnλm ∧ ∗λn

)
+

∫

V

1

6
KmnpP

m ∧ Pn ∧ P p

where

λm = Qm + Cm − gmn ∗ Pn − BmnPn (6.19)

The λm can then be integrated out to give a theory whose target space is a twisted torus

with H-flux. As in the doubled torus construction of section 5, the change in variables from

Cm to λm introduces a determinant in the path integral which gives a shift to the dilaton.

Recovering the doubled torus. Upon gauging the left action x̃ → x̃ + ǫ generated

by X̃x and integrating out the corresponding gauge field Cx, the doubled twisted torus

formalism for the duality twist construction reduces to the doubled torus formalism

of section 2 as we now show. The x-independent tensor MMN for an O(d, d)-twisted

reduction is given by [22]

MMN =




1 + MABAA
xAB

x + b2 b bLACAC
x + MACAC

x

b 1 LACAC
x

bLBCAC
x + MBCAC

x LACAC
x MAB + LACLBDAC

xAD
x
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where b = 1
2LABAA

xAB
x. The WZW term for the doubled group sigma model (6.11)

with txA
B = −NB

A and txAB = −NAB is

Swz = −1

4

∫

V
NABP x ∧ PA ∧ PB =

1

2

∮

Σ
P x ∧ Qx (6.20)

and the action for the doubled group sigma model may then be written as the integral

over the two-dimensional Lagrangian

L =
1

4
MMN (PM + CM ) ∧ ∗(PN + CN ) +

1

2
P x ∧ Cx +

1

2
P x ∧ Qx (6.21)

where

PM̂ + CM̂ =
(
PA, P x, Qx + Cx

)

Expanding this out and completing the square in Cx, the expression may be simplified

considerably

L =
1

4
MABPA ∧ ∗PB − 1

2
PA ∧ ∗JA +

1

2
gP x ∧ ∗P x +

1

4
λx ∧ ∗λx (6.22)

where JA = MABAB − LAB ∗ AB , we have defined AA = AA
xdx, and

λx = Qx + Cx − ∗P x + bP x + LABAA
xPB

g = 1 +
1

2
MABAA

xAB
x (6.23)

Integrating out λx gives the doubled torus sigma model (4.9) of [7].

6.2 Recovering the conventional background

In this section we derive the prescription for constructing the physical metric and H-field

strength from the doubled geometry that was presented in section 2.6. In particular, the

strange expression for the H-field strength (2.63) arises quite naturally from the world-

sheet point of view. We shall assume here that the generators Xm close to generate a

subgroup G̃ and so a conventional description does exist, i.e. we take Rmnp = 0. We shall

generalise to the Rmnp 6= 0 case in the following section.

We recall from (2.60) that the left-invariant one-forms on X may be written as

PM̂ = ΦN̂VN̂
M̂ (x) (6.24)

where

ΦM̂ = (rm, q̃m)

where rm and q̃m are defined in section 2.6. The VN̂
M̂ (x) may then be used to define

the metric HM̂N̂ (x) = MP̂ Q̂VM̂
P̂VQ̂

N̂ whose components define a metric gmn and B-field

Bmn by

HM̂N̂ (x) =

(
gmn + Bmpg

pqBqn Bmpg
pn

gmpBnp gmn

)
(6.25)
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The gauging of the G̃L subgroup may then be achieved by the minimal coupling

q̃m → q̃m + Cm and the addition of the term Sc given in (6.13). Expanding the gauged

sigma model action using (6.24) and (6.25) gives

S =
1

4

∮

Σ
(gmn + Bmpg

pqBqn) rm ∧ ∗rn +
1

2

∮

Σ
Bmpg

pnrm ∧ ∗(q̃ + C)n

+
1

4

∮

Σ
gmn(q̃ + C)m ∧ ∗(q̃ + C)n +

1

2

∮

Σ
rm ∧ Cm +

1

2

∫

V
K

Completing the square in Cm, this action may be written as

S =
1

2

∮

Σ
gmnrm ∧ ∗rn +

1

2

∮

Σ
Bmnrm ∧ ∗rn − 1

2

∮

Σ
rm ∧ q̃m

+
1

4

∮

Σ
gmnλm ∧ ∗λn +

1

2

∫

V
K

where

λm = q̃m + Cm − gmn ∗ rn − Bmnrn

Integrating over λm gives a shift in the dilaton as in (4.17) and we recover a conventional

world-sheet description of the theory

S =
1

2

∮

Σ
gijdxi ∧ ∗dxj +

∫

V
H

where

gij = gmnrm
ir

n
j H = dB − 1

2
d (rm ∧ q̃m) +

1

2
K

as claimed in section 2.6.

6.3 Compactifications with R-flux

In section 2 we discussed the doubled torus description of target spaces that could be

constructed as T d fibrations over S1
x with monodromy in O(d, d; Z). The natural action of

O(d, d; Z) on the theory in the fibres related different polarisations by T-duality. There is

some evidence that there should still be a T-duality on the base circle [10] that exchanges

Zx with Xx and would act on the structure constants in the gauge algebra (2.10) as

Kxab → fab
x fxa

b → Qa
xb Qx

ab → Rxab (6.26)

to give the algebra

[Xx, Za] = Qa
xbZb + fab

xXb [Xx,Xa] = −Qxa
bX

b + RxabZb

[Za, Zb] = fab
xZx [Xa, Zb] = −Qxa

bZx [Xa,Xb] = RxabZx (6.27)

As discussed in section 3.3.2, it was conjectured in [10] that the structure constant Rxab

(‘R-flux’) corresponds to a background constructed with a twist over a dual circle S̃1 (with

coordinate x̃ conjugate to the winding number). An example of such a background is
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that which arises from the conjectured T-duality of the T-fold in section 3 along the x

direction [10]. The algebra (6.27) in this case is

[Xx,Xy ] = mZz [Xy,Xz] = mZx [Xz,Xx] = mZy (6.28)

All other commutators vanish. The generators X̃m (the right-invariant counterparts to

Xm above) do not close to form a subalgebra. As such, we cannot integrate out the x̃m

completely to get a target space described solely in terms of the xm. In the classical theory

however, we can use the self-duality constraint (6.10) to remove the dx̃m dependence and

write the doubled theory in terms of the Lagrangian L(x̃, dx).

We choose to write the one-forms on X in a way that makes manifest the cyclic

symmetry of the coordinates

P x = dx − nỹdz̃ + nz̃dỹ Qx = dx̃

P y = dy − nz̃dx̃ + nx̃dz̃ Qy = dỹ

P z = dz − nx̃dỹ + nỹdx̃ Qz = dz̃

(6.29)

where

Rxyz = m = 2n ∈ Z

With a little work, the self-duality constraints (Qm = ∗δmnPn), given by (6.10) with

MMN = δMN , can be written in terms of x̃m and dxm only

Qx =
1

T

(
ζx ∗ dx + n2x̃ỹ ∗ dy + n2z̃x̃ ∗ dz + nz̃dy − nỹdz

)

Qy =
1

T

(
ζy ∗ dy + n2ỹz̃ ∗ dz + n2x̃ỹ ∗ dx + nx̃dz − nz̃dx

)

Qz =
1

T

(
ζz ∗ dz + n2z̃x̃ ∗ dx + n2ỹz̃ ∗ dy + nỹdx − nx̃dy

)
(6.30)

where

T ≡ 1 + n2(x̃2 + ỹ2 + z̃2) (6.31)

and

ζx = 1 + (nx̃)2 ζy = 1 + (nỹ)2 ζz = 1 + (nz̃)2 (6.32)

Note that using the constraints Qm = ∗δmnPn, one can show

x̃dx + ỹdy + z̃dz = ∗ (x̃Qx + ỹQy + z̃Qz) (6.33)

This result is useful in determining the expressions (6.30). The classical equation of motion

for the x-coordinate is then given by the Maurer-Cartan equation dQx = 0 and (6.30) so

that, for example, the x equation of motion is

d

(
1

T

(
ζx ∗ dx + n2x̃ỹ ∗ dy + n2z̃x̃ ∗ dz + nz̃dy − nỹdz

))
= 0 (6.34)

The y and z equations of motion are given by cyclic permutations of this. These equations

of motion may be recovered from the action

S =
1

2

∮

Σ
gmndxm ∧ ∗dxn +

1

2

∮

Σ
Bmndxm ∧ dxn (6.35)
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where the metric and B-field are

g =
1

T




ζx n2x̃ỹ n2z̃x̃

n2x̃ỹ ζy n2ỹz̃

n2z̃x̃ n2ỹz̃ ζz


 B =

n

T




0 z̃ −ỹ

−z̃ 0 x̃

ỹ −x̃ 0


 (6.36)

We see that it is possible to remove the dx̃m dependence and give a Lagrangian which

depends explicitly on the ‘winding’ coordinates x̃m and dxm. This is reminiscent of the

results found in [15–17].
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